176
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

3D self-assembled nanocarriers for drug delivery

, , , &
Pages 140-162 | Received 14 Jul 2022, Accepted 19 Jan 2023, Published online: 10 Feb 2023

References

  • Aldieri E, Fenoglio I, Cesano F, Gazzano E, Gulino G, Scarano D, Attanasio A, Mazzucco G, Ghigo D, Fubini B. 2013. The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J Toxicol Environ Health A. 76(18):1056–1071.
  • Alhaddad A, Adam M-P, Botsoa J, Dantelle G, Perruchas S, Gacoin T, Mansuy C, Lavielle S, Malvy C, Treussart F, et al. 2011. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small. 7(21):3087–3095.
  • Ansari SA, Satar R, Jafri MA, Rasool M, Ahmad W, Zaidi SK. 2016. Role of nanodiamonds in drug delivery and stem cell therapy. Iran J Biotechnol. 14(3):130–141.
  • Bai H, Li C, Wang X, Shi G. 2010. A pH-sensitive graphene oxide composite hydrogel. Chem Commun. 46(14):2376–2378.
  • Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Li J, Gan LH. 2011. Chitosan‐functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small. 7(11):1569–1578.
  • Ben-Nun Y, Fichman G, Adler-Abramovich L, Turk B, Gazit E, Blum G. 2017. Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J Control Release. 257:60–67.
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. 2016. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 33(10):2373–2387.
  • Cai D, Song M. 2010. Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem. 20(37):7906–7915.
  • Cheetham AG, Zhang P, Lin Y-a, Lock LL, Cui H. 2013. Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc. 135(8):2907–2910.
  • Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z. 2011. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem. 21(21):7736–7741.
  • Chen W, Yan L. 2011. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale. 3(8):3132–3137.
  • Chen Y-W, Hwang KC, Yen C-C, Lai Y-L. 2004. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol. 287(1):R21–R26.
  • Chen Z, Xing L, Fan Q, Cheetham AG, Lin R, Holt B, Chen L, Xiao Y, Cui H. 2017. Drug-bearing supramolecular filament hydrogels as anti-inflammatory agents. Theranostics. 7(7):2003–2014.
  • Cui H, Muraoka T, Cheetham AG, Stupp SI. 2009. Self-assembly of giant peptide nanobelts. Nano Lett. 9(3):945–951.
  • Da Ros T, Spalluto G, Prato M. 2001. Biological applications of fullerene derivatives: a brief overview. Croat Chem Acta. 74(4):743–755.
  • Dembereldorj U, Kim M, Kim S, Ganbold E-O, Lee SY, Joo S-W. 2012. A spatiotemporal anticancer drug release platform of PEGylated graphene oxide triggered by glutathione in vitro and in vivo. J Mater Chem. 22(45):23845–23851.
  • Depan D, Shah J, Misra R. 2011. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater Sci Eng C. 31(7):1305–1312.
  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A. 2011. Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res. 722(1):20–31.
  • Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, Long CA, Seder RA. 2018. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 24(1):43–56.
  • Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ. 2007. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci. 100(1):303–315.
  • El-Say KM. 2011. Nanodiamond as a drug delivery system: applications and prospective. J Appl Pharm Sci. 1(6):29–39.
  • Engel M, Small JP, Steiner M, Freitag M, Green AA, Hersam MC, Avouris P. 2008. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano. 2(12):2445–2452.
  • Fan X, Jiao G, Gao L, Jin P, Li X. 2013. The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid. J Mater Chem B. 1(20):2658–2664.
  • Fendler JH. 1996. Self-assembled nanostructured materials. Chem Mater. 8(8):1616–1624.
  • Feng L, Zhang S, Liu Z. 2011. Graphene based gene transfection. Nanoscale. 3(3):1252–1257.
  • Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, et al. 2015. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 7(11):4598–4810.
  • Friese A, Seiller E, Quack G, Lorenz B, Kreuter J. 2000. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm. 49(2):103–109.
  • Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A. 2021. Biomedical applications of carbon nanomaterials: fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials. 14(20):5978.
  • Gause C. 2010. Fullerene nanomedicines for medical and healthcare application. http://www hhmglobal com/knowledge-bank/articles/fullerene-nanomedicines-formedical-and-healthcare-applications.
  • Goenka S, Sant V, Sant S. 2014. Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release. 173:75–88.
  • Gorain B, Bhattamishra SK, Choudhury H, Nandi U, Pandey M, Kesharwani P. 2019. Chapter 3—Overexpressed receptors and proteins in lung cancer. In: Kesharwani P, editor. Nanotechnology-based targeted drug delivery systems for lung cancer. Cambridge, MA, USA: Academic Press; p. 39–75.
  • Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, Hussain Z. 2018. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: a review of recent developments and therapeutic implications. Biomed Pharmacother. 104:496–508.
  • Gorain B, Choudhury H, Pandey M, Kokare C, Khurana RK, Sehdev A, Kesharwani P. 2019. Polyester, polyhydroxyalkanoate nanoparticles as a promising tool for anticancer therapeutics. In: Polymeric nanoparticles as a promising tool for anti-cancer therapeutics. Elsevier; p. 101–121.
  • Gröger C, Lutz K, Brunner E. 2008. Biomolecular self-assembly and its relevance in silica biomineralization. Cell Biochem Biophys. 50(1):23–39.
  • Han K, Zhang J, Zhang W, Wang S, Xu L, Zhang C, Zhang X, Han H. 2017. Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy. ACS Nano. 11(3):3178–3188.
  • Huang H, Pierstorff E, Osawa E, Ho D. 2007. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7(11):3305–3314.
  • Hung CH, Chang WW, Liu SC, Wu SJ, Chu CC, Tsai YJ, Imae T. 2015. Self‐aggregation of amphiphilic [60] fullerenyl focal point functionalized PAMAM dendrons into pseudodendrimers: DNA binding involving dendriplex formation. J Biomed Mater Res A. 103(5):1595–1604.
  • Isaacson KJ, Jensen MM, Subrahmanyam NB, Ghandehari H. 2017. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J Control Release. 259:62–75.
  • Jabbari E, Yang X, Moeinzadeh S, He X. 2013. Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles. Eur J Pharm Biopharm. 84(1):49–62.
  • Jasinski D, Haque F, Binzel DW, Guo P. 2017. Advancement of the emerging field of RNA nanotechnology. ACS Nano. 11(2):1142–1164.
  • Ji T, Zhao Y, Ding Y, Wang J, Zhao R, Lang J, Qin H, Liu X, Shi J, Tao N, et al. 2016. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer‐associated fibroblast activation. Angew Chem Int Ed Engl. 55(3):1050–1055.
  • Jiang T, Zhang Z, Zhang Y, Lv H, Zhou J, Li C, Hou L, Zhang Q. 2012. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery. Biomaterials. 33(36):9246–9258.
  • Joshi A, Singh N, Verma G. 2016. Preparation and applications of self-assembled natural and synthetic nanostructures. In: Fabrication and self-assembly of nanobiomaterials. Elsevier; p. 29–55.
  • Katz E, Willner I. 2004. Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl. 43(45):6042–6108.
  • Kayser O, Lemke A, Hernandez-Trejo N. 2005. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol. 6(1):3–5.
  • Kim H, Lee D, Kim J, Kim T-i., WJ. 2013. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS nano. 7(8):6735–6746.
  • Kim K-H, Ko D-K, Kim Y-T, Kim NH, Paul J, Zhang S-Q, Murray CB, Acharya R, DeGrado WF, Kim YH. 2016. Protein-directed self-assembly of a fullerene crystal. Nat Commun. 7(1):1–9.
  • Kim SH, Kaplan JA, Sun Y, Shieh A, Sun HL, Croce CM, Grinstaff MW, Parquette JR. 2015. The self‐assembly of anticancer camptothecin–dipeptide nanotubes: a minimalistic and high drug loading approach to increased efficacy. Chemistry. 21(1):101–105.
  • Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. 2006. Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol. 1(3):340–350.
  • Klinkova A, Choueiri RM, Kumacheva E. 2014. Self-assembled plasmonic nanostructures. Chem Soc Rev. 43(11):3976–3991.
  • Koss K, Tsui C, Unsworth L. 2016. Induced neural differentiation of MMP-2 cleaved (RADA) 4 drug delivery systems. J Control Release. 243:204–213.
  • Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru S, Garrell RL, Torbati S, Freitas SS, Chow G-M. 1995. Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjug Chem. 6(5):507–511.
  • Kramer L, Turk D, Turk B. 2017. The future of cysteine cathepsins in disease management. Trends Pharmacol Sci. 38(10):873–898.
  • Kratz F, Warnecke A. 2012. Finding the optimal balance: challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J Control Release. 164(2):221–235.
  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R. 2002. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J Drug Target. 10(4):317–325.
  • La WG, Park S, Yoon HH, Jeong GJ, Lee TJ, Bhang SH, Han JY, Char K, Kim BS. 2013. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small. 9(23):4051–4060.
  • Lao F, Chen L, Li W, Ge C, Qu Y, Sun Q, Zhao Y, Han D, Chen C. 2009. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS Nano. 3(11):3358–3368.
  • Lau JL, Dunn MK. 2018. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 26(10):2700–2707.
  • Lavan DA, McGuire T, Langer R. 2003. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 21(10):1184–1191.
  • Li F, Yager KG, Dawson NM, Jiang Y-B, Malloy KJ, Qin Y. 2015. Nano-structuring polymer/fullerene composites through the interplay of conjugated polymer crystallization, block copolymer self-assembly and complementary hydrogen bonding interactions. Polym Chem. 6(5):721–731.
  • Li J, Mooney DJ. 2016. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 1(12):1–17.
  • Li X, Huang X, Liu D, Wang X, Song S, Zhou L, Zhang H. 2011. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J Phys Chem C. 115(44):21567–21573.
  • Liao G, He F, Li Q, Zhong L, Zhao R, Che H, Gao H, Fang B. 2020. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog Mater Sci. 112:100666.
  • Lin R, Cheetham AG, Zhang P, Lin Y-a, Cui H. 2013. Supramolecular filaments containing a fixed 41% paclitaxel loading. Chem Commun. 49(43):4968–4970.
  • Liu K-K, Cheng C-L, Chang C-C, Chao J-I. 2007. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology. 18(32):325102.
  • Liu K, Li H, Williams GR, Wu J, Zhu L-M. 2018. pH-responsive liposomes self-assembled from electrosprayed microparticles, and their drug release properties. Colloids Surf A. 537:20–27.
  • Liu K, Zhang J-J, Cheng F-F, Zheng T-T, Wang C, Zhu J-J. 2011. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem. 21(32):12034–12040.
  • Liu Z, Robinson JT, Sun X, Dai H. 2008. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 130(33):10876–10877.
  • Liu Z, Tabakman S, Welsher K, Dai H. 2009. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2(2):85–120.
  • Lo CT, Jahn A, Locascio LE, Vreeland WN. 2010. Controlled self-assembly of monodisperse niosomes by microfluidic hydrodynamic focusing. Langmuir. 26(11):8559–8566.
  • Lock LL, Li Y, Mao X, Chen H, Staedtke V, Bai R, Ma W, Lin R, Li Y, Liu G, et al. 2017. One-component supramolecular filament hydrogels as theranostic label-free magnetic resonance imaging agents. ACS Nano. 11(1):797–805.
  • Lock LL, Reyes CD, Zhang P, Cui H. 2016. Tuning cellular uptake of molecular probes by rational design of their assembly into supramolecular nanoprobes. J Am Chem Soc. 138(10):3533–3540.
  • Lombardo D, Calandra P, Pasqua L, Magazù S. 2020. Self-assembly of organic nanomaterials and biomaterials: the bottom-up approach for functional nanostructures formation and advanced applications. Materials. 13(5):1048.
  • Lu C, Wang Y, Yang S, Wang C, Sun X, Lu J, Yin H, Jiang W, Meng H, Rao F, et al. 2018. Bioactive self-assembling peptide hydrogels functionalized with brain-derived neurotrophic factor and nerve growth factor mimicking peptides synergistically promote peripheral nerve regeneration. ACS Biomater Sci Eng. 4(8):2994–3005.
  • Luo S, Luo Y, Wu H, Li M, Yan L, Jiang K, Liu L, Li Q, Fan S, Wang J. 2017. Self‐assembly of 3D carbon nanotube sponges: a simple and controllable way to build macroscopic and ultralight porous architectures. Adv Mater. 29(1):1603549.
  • Ma W, Su H, Cheetham AG, Zhang W, Wang Y, Kan Q, Cui H. 2017. Synergistic antitumor activity of a self-assembling camptothecin and capecitabine hybrid prodrug for improved efficacy. J Control Release. 263:102–111.
  • Mason TO, Shimanovich U. 2018. Fibrous protein self‐assembly in biomimetic materials. Adv Mater. 30(41):1706462.
  • Meher JG, Dixit S, Pathan DK, Singh Y, Chandasana H, Pawar VK, Sharma M, Bhatta RS, Konwar R, Kesharwani P, et al. 2018. Paclitaxel-loaded TPGS enriched self-emulsifying carrier causes apoptosis by modulating survivin expression and inhibits tumour growth in syngeneic mammary tumours. Artif Cells Nanomed Biotechnol. 46(Suppl. 3):S344–S358.
  • Mendes AC, Baran ET, Reis RL, Azevedo HS. 2013. Self‐assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 5(6):582–612.
  • Modi G, Pillay V, Choonara YE, Ndesendo VM, Du Toit LC, Naidoo D. 2009. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol. 88(4):272–285.
  • Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. 2013. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat Nanotechnol. 8(10):763–771.
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, Byrne F, Prina-Mello A, Volkov Y, Li S, et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol. 178(6):2587–2600.
  • Nguyen PK, Sarkar B, Siddiqui Z, McGowan M, Iglesias-Montoro P, Rachapudi S, Kim S, Gao W, Lee EJ, Kumar VA. 2018. Self-assembly of an antiangiogenic nanofibrous peptide hydrogel. ACS Appl Bio Mater. 1(3):865–870.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. 2004. Electric field effect in atomically thin carbon films. science 306:666–669.
  • Pan Y, Bao H, Sahoo NG, Wu T, Li L. 2011. Water‐soluble poly (N‐isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Adv Funct Mater. 21(14):2754–2763.
  • Panyam J, Labhasetwar V. 2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 55(3):329–347.
  • Peters EB, Tsihlis ND, Karver MR, Chin SM, Musetti B, Ledford BT, Bahnson EM, Stupp SI, Kibbe MR. 2019. Atheroma niche‐responsive nanocarriers for immunotherapeutic delivery. Adv Healthcare Mater. 8(3):1801545.
  • Rana VK, Choi MC, Kong JY, Kim GY, Kim MJ, Kim SH, Mishra S, Singh RP, Ha CS. 2011. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromol Mater Eng. 296(2):131–140.
  • Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, Monick MM. 2011. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem. 286(24):21844–21852.
  • Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr Sawa E, Hussain SM, Dai L. 2007. Are diamond nanoparticles cytotoxic? J Phys Chem B. 111(1):2–7.
  • Shen H, Zhang L, Liu M, Zhang Z. 2012. Biomedical applications of graphene. Theranostics. 2(3):283–294.
  • Sherlock SP, Tabakman SM, Xie L, Dai H. 2011. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano. 5(2):1505–1512.
  • Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. 2011. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl. 50(31):7027–7031.
  • Shukla R, Handa M, Lokesh SB, Ruwali M, Kohli K, Kesharwani P. 2019. Conclusion and future prospective of polymeric nanoparticles for cancer therapy. In: Polymeric nanoparticles as a promising tool for anti-cancer therapeutics. Elsevier; p. 389–408.
  • Sigg SJ, Postupalenko V, Duskey JT, Palivan CG, Meier W. 2016. Stimuli-responsive codelivery of oligonucleotides and drugs by self-assembled peptide nanoparticles. Biomacromolecules. 17(3):935–945.
  • Sis MJ, Webber MJ. 2019. Drug delivery with designed peptide assemblies. Trends Pharmacol Sci. 40(10):747–762.
  • Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J. 2020. Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces. 185:110596.
  • Stephanopoulos N, Ortony JH, Stupp SI. 2013. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 61(3):912–930.
  • Stolnik S, Illum L, Davis S. 2012. Long circulating microparticulate drug carriers. Adv Drug Delivery Rev. 64:290–301.
  • Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. 2008. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3):203–212.
  • Tang W, Zhao Z, Chong Y, Wu C, Liu Q, Yang J, Zhou R, Lian Z-X, Liang G. 2018. Tandem Enzymatic self-assembly and slow release of dexamethasone enhances its antihepatic fibrosis effect. ACS Nano. 12(10):9966–9973.
  • Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, Shukla R. 2020. Recent advances in self-assembled nanoparticles for drug delivery. Curr Drug Deliv. 17(4):279–291.
  • Wang H, Feng Z, Wang Y, Zhou R, Yang Z, Xu B. 2016. Integrating enzymatic self-assembly and mitochondria targeting for selectively killing cancer cells without acquired drug resistance. J Am Chem Soc. 138(49):16046–16055.
  • Wang J, Liu K, Xing R, Yan X. 2016. Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev. 45(20):5589–5604.
  • Wang X, Guo J, Chen T, Nie H, Wang H, Zang J, Cui X, Jia G. 2012. Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro. 26(6):799–806.
  • Wang Y, Maspoch D, Zou S, Schatz GC, Smalley RE, Mirkin CA. 2006. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc Natl Acad Sci. 103(7):2026–2031.
  • Webber MJ, Appel EA, Meijer E, Langer R. 2016. Supramolecular biomaterials. Nat Mater. 15(1):13–26.
  • Webber MJ, Matson JB, Tamboli VK, Stupp SI. 2012. Controlled release of dexamethasone from peptide nanofiber gels to modulate inflammatory response. Biomaterials. 33(28):6823–6832.
  • Wen H, Dong C, Dong H, Shen A, Xia W, Cai X, Song Y, Li X, Li Y, Shi D. 2012. Engineered redox‐responsive PEG detachment mechanism in PEGylated nano‐graphene oxide for intracellular drug delivery. Small. 8(5):760–769.
  • Wen Y, Collier JH. 2015. Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol. 35:73–79.
  • Willner I, Willner B. 2010. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 10(10):3805–3815.
  • Wu J, Wang Y-s, Yang X-y, Liu Y-y, Yang J-r, Yang R, Zhang N. 2012. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology. 23(35):355101.
  • Wu J, Zheng Z, Chong Y, Li X, Pu L, Tang Q, Yang L, Wang X, Wang F, Liang G. 2018. Immune responsive release of tacrolimus to overcome organ transplant rejection. Adv Mater. 30(45):1805018.
  • Xie L, Wang G, Zhou H, Zhang F, Guo Z, Liu C, Zhang X, Zhu L. 2016. Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imaging-guided enhanced phototherapy. Biomaterials. 103:219–228.
  • Xu K, Chao J, Li W, Liu Q, Wang Z, Liu X, Zou R, Hu J. 2014. CoMoO4·0.9H2O nanorods grown on reduced graphene oxide as advanced electrochemical pseudocapacitor materials. RSC Adv. 4(65):34307–34314.
  • Yan X, Zhu P, Li J. 2010. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev. 39(6):1877–1890.
  • Yang K, Feng L, Shi X, Liu Z. 2013. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 42(2):530–547.
  • Yang L, Liu A, Cao S, Putri RM, Jonkheijm P, Cornelissen JJ. 2016. Self‐assembly of proteins: towards supramolecular materials. Chemistry. 22(44):15570–15582.
  • Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y. 2009. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem. 19(18):2710–2714.
  • Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y. 2012. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry. 18(14):4208–4215.
  • Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C. 2010. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine. 6(3):427–441.
  • Yi H, Song H, Chen X. 2007. Carbon nanotube capsules self-assembled by W/O emulsion technique. Langmuir. 23(6):3199–3204.
  • Yomogida Y, Tanaka T, Zhang M, Yudasaka M, Wei X, Kataura H. 2016. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging. Nat Commun. 7(1):1–8.
  • Yu D-G, Yang J-H, Wang X, Tian F. 2012. Liposomes self-assembled from electrosprayed composite microparticles. Nanotechnology. 23(10):105606.
  • Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. 2010. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 6(4):537–544.
  • Zhang P, Cheetham AG, Lin Y-a, Cui H. 2013. Self-assembled tat nanofibers as effective drug carrier and transporter. ACS Nano. 7(7):5965–5977.
  • Zhang S. 2003. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 21(10):1171–1178.
  • Zhang S, Marini DM, Hwang W, Santoso S. 2002. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol. 6(6):865–871.
  • Zhang X, Xu X, Li Y, Hu C, Zhang Z, Gu Z. 2018. Virion‐like membrane‐breaking nanoparticles with tumor‐activated cell‐and‐tissue dual‐penetration conquer impermeable cancer. Adv Mater. 30(27):1707240.
  • Zhu Z, Su D, Weinberg G, Schlögl R. 2004. Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4(11):2255–2259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.