189
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Relationship between blood–brain barrier changes and drug metabolism under high-altitude hypoxia: obstacle or opportunity for drug transport?

, , , , &
Pages 107-125 | Received 13 Oct 2022, Accepted 08 Feb 2023, Published online: 23 Feb 2023

References

  • Abdullahi W, Davis TP, Ronaldson PT. 2017. Functional expression of P-glycoprotein and organic anion transporting polypeptides at the blood–brain barrier: understanding transport mechanisms for improved CNS drug delivery? Aaps J. 19(4):931–939.
  • Abdullahi W, Tripathi D, Ronaldson PT. 2018. Blood–brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol. 315(3):C343–C356.
  • Agúndez JA, García-Martín E, Alonso-Navarro H, Jiménez-Jiménez FJ. 2013. Anti-parkinson’s disease drugs and pharmacogenetic considerations. Expert Opin Drug Metab Toxicol. 9(7):859–874.
  • Al Ahmad A, Gassmann M, Ogunshola OO. 2012. Involvement of oxidative stress in hypoxia-induced blood–brain barrier breakdown. Microvasc Res. 84(2):222–225.
  • Al-Ahmady ZS, Jasim D, Ahmad SS, Wong R, Haley M, Coutts G, Schiessl I, Allan SM, Kostarelos K. 2019. Selective liposomal transport through blood–brain barrier disruption in ischemic stroke reveals two distinct therapeutic opportunities. ACS Nano. 13(11):12470–12486.
  • Albekairi TH, Vaidya B, Patel R, Nozohouri S, Villalba H, Zhang Y, Lee YS, Al-Ahmad A, Abbruscato TJ. 2019. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: role of organic anion transporting polypeptide (OATP). Pharmaceutics. 11(9):467.
  • Amin N, Chen S, Ren Q, Tan X, Botchway BOA, Hu Z, Chen F, Ye S, Du X, Chen Z, et al. 2021. Hypoxia inducible factor-1α attenuates ischemic brain damage by modulating inflammatory response and glial activity. Cells. 10(6):1359.
  • Anjana GV, Krishna K, Joginder D. 2012. Effect of intermittent hypobaric hypoxia on efficacy and clearance of drug. Indian J Med Res. 135(2):211–216.
  • Badaut J, Ajao DO, Sorensen DW, Fukuda AM, Pellerin L. 2015. Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood–brain barrier healing? Neuroscience. 285:215–226.
  • Bai X, Liu G, Yang J, Zhu J, Li X. 2022. Gut Microbiota as the potential mechanism to mediate drug metabolism under high-altitude hypoxia. Curr Drug Metab. 23(1):8–20.
  • Ballabh P, Braun A, Nedergaard M. 2004. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 16(1):1–13.
  • Barialai L, Strecker MI, Luger A-L, Jäger M, Bruns I, Sittig ACM, Mildenberger IC, Heller SM, Delaidelli A, Lorenz NI, et al. 2020. AMPK activation protects astrocytes from hypoxia induced cell death. Int J Mol Med. 45(5):1385–1396.
  • Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, Rausch V, Blasig R, Richter M, Sporbert A, et al. 2019. Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cell Mol Life Sci. 76(10):1987–2002.
  • Bhattacharyya S, Zhang X, Feferman L, Johnson D, Tortella FC, Guizzetti M, Tobacman JK. 2015. Decline in arylsulfatase B and Increase in chondroitin 4-sulfotransferase combine to increase chondroitin 4-sulfate in traumatic brain injury. J Neurochem. 134(4):728–739.
  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC. 2009. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 4(3):226–235.
  • Blondel S, Strazielle N, Amara A, Guy R, Bain C, Rose A, Guibaud L, Tiribelli C, Gazzin S, Ghersi-Egea JF. 2022. Vascular network expansion, integrity of blood–brain interfaces, and cerebrospinal fluid cytokine concentration during postnatal development in the normal and jaundiced rat. Fluids Barriers CNS. 19(1):47.
  • Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X. 2016. MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab. 36(2):387–392.
  • Chatard M, Puech C, Roche F, Perek N. 2016. Hypoxic stress induced by hydralazine leads to a loss of blood–brain barrier integrity and an increase in efflux transporter activity. PLOS ONE. 11(6):e0158010.
  • Chen T, Li Y, Li C, Yi X, Wang R, Lee SM, Zheng Y. 2017. Pluronic P85/F68 micelles of baicalein could interfere with mitochondria to overcome MRP2-mediated efflux and offer improved anti-parkinsonian activity. Mol Pharmaceutics. 14(10):3331–3342.
  • Choudhry H, Harris AL. 2018. Advances in hypoxia-inducible factor biology. Cell Metab. 27(2):281–298.
  • Dazert P, Suofu Y, Grube M, Popa-Wagner A, Kroemer HK, Jedlitschky G, Kessler C. 2006. Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience. 142(4):1071–1079.
  • de Castro FA, Simões BP, Coelho EB, Lanchote VL. 2017. Enantioselectivity in the metabolism of cyclophosphamide in patients with multiple or systemic sclerosis. J Clin Pharmacol. 57(6):784–795.
  • Dou Z, Rong X, Zhao E, Zhang L, Lv Y. 2019. Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol. 39(6):883–898.
  • Du Souich P, Varin F, Courteau H. 1986. Effect of hypercapnia and/or hypoxemia and metabolic acidosis on kinetics and concentrations of phenytoin in the cerebrospinal fluid of conscious rabbits. Neuropharmacology. 25(8):857–862.
  • Duan Y, Bai X, Yang J, Zhou Y, Gu W, Liu G, Wang Q, Zhu J, La L, Li X. 2022. Exposure to high-altitude environment is associated with drug transporters change: microRNA-873-5p-mediated alteration of function and expression levels of drug transporters under hypoxia. Drug Metab Dispos. 50(2):174–186.
  • Ek CJ, D'Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PL, Nilsson H, Svedin P, Hagberg H, Mallard C. 2015. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab. 35(5):818–827.
  • Engelhardt S, Al-Ahmad AJ, Gassmann M, Ogunshola OO. 2014. Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. J Cell Physiol. 229(8):1096–1105.
  • Eser Ocak P, Ocak U, Sherchan P, Zhang JH, Tang J. 2020. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res. 98(1):29–41.
  • Fischer S, Renz D, Kleinstück J, Schaper W, Karliczek GF. 2004. In vitro effects of anaesthetic agents on the blood–brain barrier. Anaesthesist. 53(12):1177–1184.
  • Gong W, Liu S, Xu P, Fan M, Xue M. 2015. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats. Molecules. 20(4):6901–6912.
  • Haduch A, Daniel WA. 2018. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: a possible role in mental disorders. Drug Metab Rev. 50(4):415–429.
  • Han L, Jiang C. 2021. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain targeting drug delivery strategies. Acta Pharm Sin B. 11(8):2306–2325.
  • Han L, Qu Q, Aydin D, Panova O, Robertson MJ, Xu Y, Dror RO, Skiniotis G, Feng L. 2022. Structure and mechanism of the SGLT family of glucose transporters. Nature. 601(7892):274–279.
  • Han M, Wang S, Yang N, Wang X, Zhao W, Saed HS, Daubon T, Huang B, Chen A, Li G, et al. 2020. Therapeutic implications of altered cholesterol homeostasis mediated by loss of CYP46A1 in human glioblastoma. EMBO Mol Med. 12(1):e10924.
  • Hyun SW, Jung YS. 2014. Hypoxia induces FoxO3a-mediated dysfunction of blood–brain barrier. Biochem Biophys Res Commun. 450(4):1638–1642.
  • Ihezie SA, Mathew IE, McBride DW, Dienel A, Blackburn SL, Thankamani Pandit PK. 2021. Epigenetics in blood–brain barrier disruption. Fluids Barriers CNS. 18(1):17.
  • Jacob A, Potin S, Bruno S, Dominique C, Jean-Michel S, Emmanuel C, Carole P, Xavier D. 2015. Hypoxia interferes with aryl hydrocarbon receptor pathway in hCMEC/D3 human cerebral microvascular endothelial cells. J Neurochem. 132(4):373–383.
  • Kadry H, Noorani B, Cucullo L. 2020. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 17(1):69.
  • Kagawa Y, Yamamoto Y, Ueno A, Maeda T, Obi T. 2021. Impact of CYP2D6, CYP3A5, and ABCB1 polymorphisms on plasma concentrations of donepezil and its metabolite in patients with Alzheimer Disease. Ther Drug Monit. 43(3):429–435.
  • Kalliokoski A, Niemi M. 2009. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 158(3):693–705.
  • Kilic E, Spudich A, Kilic U, Rentsch KM, Vig R, Matter CM, Wunderli-Allenspach H, Fritschy JM, Bassetti CL, Hermann DM. 2008. ABCC1: a gateway for pharmacological compounds to the ischaemic brain. Brain. 131(10):2679–2689.
  • Kodama S, Koike C, Negishi M, Yamamoto Y. 2004. Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol. 24(18):7931–7940.
  • Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, van der Pol SM, van Het Hof B, Scheffer G, Scheper R, et al. 2011. Adenosine triphosphate-binding cassette transporters mediate chemokine (C–C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain. 134(2):555–570.
  • Kortekaas R, Leenders KL, van Oostrom JCH, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH. 2005. Blood–brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann Neurol. 57(2):176–179.
  • Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Brüning T, Plath AS, Alfen F, et al. 2011. Cerebral amyloid-beta proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest. 121(10):3924–3931.
  • Kuban W, Daniel WA. 2021. Cytochrome P450 expression and regulation in the brain. Drug Metab Rev. 53(1):1–29.
  • Li H, Sun J, Du J, Wang F, Fang R, Yu C, Xiong J, Chen W, Lu Z, Liu J. 2018. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil. 30(5):e13260.
  • Li W, Jia Z, Xie H, Zhang J, Wang Y, Hao Y, Wang R. 2013.Effect of acute exposure to high altitude on the pharmacokinetics of propranolol. J. Cent. South Univ. 38(9):909–914. Chinese.
  • Li W, Wang R, Xie H, Zhang J, Wang Y, Jia Z. 2015. Effects on pharmacokinetics of propranolol and other factors in rats after acute exposure to high altitude at 4,010 m. Cell Biochem Biophys. 72(1):27–36.
  • Li X, Wang X, Li Y, Yuan M, Zhu J, Su X, Yao X, Fan X, Duan Y. 2014a. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology. 93(1-2):76–83.
  • Li X, Wang X, Li Y, Zhu J, Su X, Yao X, Fan X, Duan Y. 2014b. The activity, protein, and mRNA expression of CYP2E1 and CYP3A1 in rats after exposure to acute and chronic high altitude hypoxia. High Alt Med Bio. 15(4):491–496.
  • Lidin E, Sköld MK, Angéria M, Davidsson J, Risling M. 2022. Hippocampal expression of cytochrome P450 1B1 in penetrating traumatic brain injury. IJMS. 23(2):722.
  • Lin YT, Wu KJ. 2020. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling. J Biomed Sci. 27(1):39.
  • Liu G, Bai X, Duan Y, Zhu J, Yang J, Wang Q, Zhou Y, Gu W. 2021. [Changes in the intestinal flora of rats under high altitude hypoxia]. Acta Pharm Sin. 56(4):1100–1108. Chinese.
  • Liu J, Wang W, Wang L, Chen S, Tian B, Huang K, Corrigan CJ, Ying S, Wang W, Wang C. 2018. IL-33 Initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells. EBioMedicine. 33:196–210.
  • Liu JS, He YJ, Zhang J, Li J, Yu X, Cao Z, Meng F, Zhao Y, Wu X, Shen T, et al. 2015. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials. 74:64–76.
  • Liu M, Alkayed NJ. 2005. Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab. 25(8):939–948.
  • Lu DY, Yu WH, Yeh WL, Tang CH, Leung YM, Wong KL, Chen YF, Lai CH, Fu WM. 2009. Hypoxia-induced matrix metalloproteinase-13 expression in astrocytes enhances permeability of brain endothelial cells. J Cell Physiol. 220(1):163–173.
  • Lu F, Zhu J, Guo S, Wong BJ, Chehab FF, Ferriero DM, Jiang X. 2018. Upregulation of cholesterol 24-hydroxylase following hypoxia-ischemia in neonatal mouse brain. Pediatr Res. 83(6):1218–1227.
  • Ma F, Zhang X, Yin KJ. 2020. MicroRNAs in central nervous system diseases: a prospective role in regulating blood–brain barrier integrity. Exp Neurol. 323:113094.
  • Ma J, Wang J, Cheng J, Xiao W, Fan K, Gu J, Yu B, Yin G, Wu J, Ren J, et al. 2017. Impacts of blast-induced traumatic brain injury on expressions of hepatic cytochrome P450 1A2, 2B1, 2D1, and 3A2 in rats. Cell Mol Neurobiol. 37(1):111–120.
  • Makuch-Kocka A, Andres-Mach M, Zagaja M, Śmiech A, Pizoń M, Flieger J, Cielecka-Piontek J, Plech T. 2021. Effect of chronic administration of 5- (3-chlorophenyl) - 4- Hexyl - 2, 4 - Dihydro - 3H - 1, 2, 4 - Triazole - 3 - Thione (TP - 315) -a new anticonvulsant drug candidate on living organisms. IJMS. 22(7):3358.
  • Martinez-Hernandez A, Perez-Guerrero EE, Macias-Islas MA, Nava-Valdivia CA, Villagomez-Vega A, Contreras-Haro B, Garcia-Ortega YE, Esparza-Guerrero Y, Gallardo-Moya SG, Gamez-Nava JI, et al. 2021. Polymorphisms CYP2R1 rs10766197 and CYP27B1 rs10877012 in multiple sclerosis: a case-control study. J Immunol Res. 2021:1–11.
  • Miller DS. 2015. Regulation of ABC transporters at the blood–brain barrier. Clin Pharmacol Ther. 97(4):395–403.
  • Mizutani T, Hattori A. 2005. New horizon of MDR1 (P-glycoprotein) study. Drug Metab Rev. 37(3):489–510.
  • Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W. 2007. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes. J Neuroinflammation. 4(1):12.
  • Neuhaus W, Gaiser F, Mahringer A, Franz J, Riethmüller C, Förster C. 2014. The pivotal role of astrocytes in an in vitro stroke model of the blood–brain barrier. Front Cell Neurosci. 8:352.
  • Nian Y, Xin Y, Yang J, Zhu L, Liu G, Li XY. 2019. [Effect of simulated high altitude hypoxia on pharmacokinetics of acetaminophen]. West China J Pharm Sci. 34(2):141–146. Chinese.
  • Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J, Yamamoto H. 1995. Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem. 270(47):28316–28324.
  • Obaidat A, Roth M, Hagenbuch B. 2012. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu Rev Pharmacol Toxicol. 52(1):135–151.
  • Ozgür B, Helms HCC, Tornabene E, Brodin B. 2022. Hypoxia increases expression of selected blood–brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers. Fluids Barriers CNS. 19(1):1–17.
  • Park TE, Mustafaoglu N, Herland A, Hasselkus R, Mannix R, FitzGerald EA, Prantil-Baun R, Watters A, Henry O, Benz M, et al. 2019. Hypoxia-enhanced blood–brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun. 10(1):2621.
  • Parker A, Fonseca S, Carding SR. 2020. Gut microbes and metabolites as modulators of blood–brain barrier integrity and brain health. Gut Microbes. 11(2):135–157.
  • Pottoo FH, Sharma S, Javed MN, Barkat MA, Alam MS, Naim MJ, Alam O, Ansari MA, Barreto GE, Ashraf GM, et al. 2020. Lipid-based nanoformulations in the treatment of neurological disorders. Drug Metab Rev. 52(1):185–204.
  • Rattner A, Williams J, Nathans J. 2019. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 129(9):3807–3820.
  • Ribatti D, Nico B, Crivellato E. 2011. The role of pericytes in angiogenesis. Int J Dev Biol. 55(3):261–268.
  • Ritschel WA, Paulos C, Arancibia A, Pezzani M, Agrawal MA, Wetzelsberger KM, Lücker PW. 1996. Pharmacokinetics of meperidine in healthy volunteers after short and long-term exposure to high altitude. J Clin Pharmacol. 36(7):610–616.
  • Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. 2018. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 18(7):452–464.
  • Rodriguez-Grande B, Ichkova A, Lemarchant S, Badaut J. 2017. Early to long-term alterations of CNS barriers after traumatic brain injury: considerations for drug development. Aaps J. 19(6):1615–1625.
  • Ronaldson PT, Davis TP. 2020. Regulation of blood–brain barrier integrity by microglia in health and disease: a therapeutic opportunity. J Cereb Blood Flow Metab. 40(1_suppl):S6–S24.
  • Sakakibara Y, Katoh M, Imai K, Kondo Y, Asai Y, Ikushiro S, Nadai M. 2016. Expression of UGT1A subfamily in rat brain. Biopharm Drug Dispos. 37(5):314–319.
  • Selkoe DJ, Hardy J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 8(6):595–608.
  • Shang J, Yamashita T, Tian F, Li X, Liu X, Shi X, Nakano Y, Tsunoda K, Nomura E, Sasaki R, et al. 2019. Chronic cerebral hypoperfusion alters amyloid-β transport related proteins in the cortical blood vessels of Alzheimer’s disease model mouse. Brain Res. 1723:146379.
  • Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, Yadav S, Khanna VK, Das V, Jain SK, et al. 2012. Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34(+) stem cell-derived differentiating neuronal cells. Toxicol Sci. 129(2):392–410.
  • Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV. 2003. Potential role of MCP-1 in endothelial cell tight junction opening: signaling via Rho and Rho kinase. J Cell Sci. 116(Pt 22):4615–4628.
  • Stenzel-Poore MP, Stevens SL, Xiong Z, Lessov NS, Harrington CA, Mori M, Meller R, Rosenzweig HL, Tobar E, Shaw TE, et al. 2003. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-toler-ance states. Lancet. 362(9389):1028–1037.
  • Storelli F, Billington S, Kumar AR, Unadkat JD. 2021. Abundance of P-Glycoprotein and other drug transporters at the human blood–brain barrier in Alzheimer’s disease: a quantitative targeted proteomic study. Clin Pharmacol Ther. 109(3):667–675.
  • Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. 2019. Blood–brain barrier: from physiology to disease and back. Physiol Rev. 99(1):21–78.
  • Tanaka T, Nangaku M. 2013. Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol. 9(4):211–222.
  • Thompson BJ, Sanchez-Covarrubias L, Slosky LM, Zhang Y, Laracuente ML, Ronaldson PT. 2014. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood–brain barrier: relevance to CNS drug delivery. J Cereb Blood Flow Metab. 34(4):699–707.
  • Tiwary S, Morales JE, Kwiatkowski SC, Lang FF, Rao G, McCarty JH. 2018. Metastatic brain tumors disrupt the blood–brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter mfsd2a. Sci Rep. 8(1):8267.
  • Tjakra M, Wang Y, Vania V, Hou Z, Durkan C, Wang N, Wang G. 2020. Overview of crosstalk between multiple factor of transcytosis in blood–brain barrier. Front Neurosci. 13:1436.
  • Ur Rasheed MS, Mishra AK, Singh MP. 2017. Cytochrome P450 2D6 and Parkinson’s disease: polymorphism, metabolic role, risk and rrotection. Neurochem Res. 42(12):3353–3361.
  • van Vliet EA, Redeker S, Aronica E, Edelbroek PM, Gorter JA. 2005. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia. 46(10):1569–1580.
  • Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al. 2020. Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood–brain barrier integrity. Circ Res. 127(4):466–482.
  • Wang Q, Zuo Z. 2018. Impact of transporters and enzymes from blood-cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake. Expert Opin Drug Metab Toxicol. 14(9):961–972.
  • Wang X, Suofu Y, Akpinar B, Baranov SV, Kim J, Carlisle DL, Zhang Y, Friedlander RM. 2017. Systemic antimiR-337-3p delivery inhibits cerebral ischemia-mediated injury. Neurobiol Dis. 105:156–163.
  • Wang Y, Meng X, Wang A, Xie X, Pan Y, Johnston SC, Li H, Bath PM, Dong Q, Xu A, et al. 2021. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N Engl J Med. 385(27):2520–2530.
  • Welcome MO. 2019. Gut microbiota disorder, gut epithelial and blood–brain barrier dysfunctions in etiopathogenesis of dementia: molecular mechanisms and signaling pathways. Neuromol Med. 21(3):205–226.
  • Wijesuriya HC, Bullock JY, Faull RL, Hladky SB, Barrand MA. 2010. ABC efflux transporters in brain vasculature of Alzheimer’s subjects. Brain Res. 1358:228–238.
  • Witt KA, Mark KS, Hom S, Davis TP. 2003. Effects of hypoxia-reoxygenation on rat blood–brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 285(6):H2820–H2831.
  • Witt KA, Mark KS, Sandoval KE, Davis TP. 2008. Reoxygenation stress on blood–brain barrier paracellular permeability and edema in the rat. Microvasc Res. 75(1):91–96.
  • Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K, Walker D, Lue LF, Stanimirovic D, et al. 2009. ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood–brain barrier for Aβ(1-40) peptides. J Neurosci. 29(17):5463–5475.
  • Xiong M, Chen LX, Ma SM, Yang Y, Zhou WH. 2013. Short-term effects of hypothermia on axonal injury, preoligodendrocyte accumulation and oligodendrocyte myelination after hypoxia-ischemia in the hippocampus of immature rat brain. Dev Neurosci. 35(1):17–27.
  • Xu D, Huang S, Wang H, Xie W. 2018. Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors. Drug Metab Rev. 50(4):407–414.
  • Xu L, Li G, Tang X, Feng C, Li M, Jiang X, Gu Y, Yun Y, Lu L, Feng X, et al. 2021. MiR-375-3p mediates reduced pineal function in hypoxia-ischemia brain damage. Exp Neurol. 344:113814.
  • Yeh WL, Lu DY, Lin CJ, Liou HC, Fu WM. 2007. Inhibition of hypoxia-induced increase of blood–brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression. Mol Pharmacol. 72(2):440–449.
  • Zhang Y, Li X, Qiao S, Yang D, Li Z, Xu J, Li W, Su L, Liu W. 2021. Occludin degradation makes brain microvascular endothelial cells more vulnerable to reperfusion injury in vitro. J Neurochem. 156(3):352–366.
  • Ziegler N, Awwad K, Fisslthaler B, Reis M, Devraj K, Corada M, Minardi SP, Dejana E, Plate KH, Fleming I, et al. 2016. β-Catenin is required for endothelial Cyp1b1 regulation influencing metabolic barrier function. J Neurosci. 36(34):8921–8935.
  • Zolotoff C, Voirin AC, Puech C, Roche F, Perek N. 2020. Intermittent hypoxia and its impact on Nrf2/HIF-1α expression and ABC transporters: an in vitro human blood–brain barrier model study. Cell Physiol Biochem. 54(6):1231–1248.
  • Zordoky BN, El-Kadi AO. 2009. Role of NF-kappa B in the regulation of cytochrome P450 enzymes. CDM. 10(2):164–178.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.