126
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Ocular drug-metabolizing enzymes: focus on esterases

&
Received 12 Feb 2024, Accepted 10 Jun 2024, Published online: 19 Jun 2024

References

  • Abet V, Filace F, Recio J, Alvarez-Builla J, Burgos C. 2017. Prodrug approach: an overview of recent cases. Eur J Med Chem. 127:810–827. doi: 10.1016/j.ejmech.2016.10.061.
  • Acheampong AA, Shackleton M, John B, Burke J, Wheeler L, Tang-Liu D. 2002. Distribution of brimonidine into anterior and posterior tissues of monkey, rabbit, and rat eyes. Drug Metab Dispos. 30(4):421–429. doi: 10.1124/dmd.30.4.421.
  • Ahmad H, Singh SV, Medh RD, Ansari GAS, Kurosky A, Awasthi YC. 1988. Differential expression of α, μ and π classes of isozymes of glutathione S-transferase in bovine lens, cornea, and retina. Arch Biochem Biophys. 266(2):416–426. doi: 10.1016/0003-9861(88)90273-1.
  • Ahmad H, Singh SV, Srivastava SK, Awasthi YC. 1989. Glutathione S-transferases of bovine iris and ciliary body: characterization of isoenzymes. Curr Eye Res. 8(2):175–184. doi: 10.3109/02713688908995189.
  • Ahmad MT, Zhang P, Dufresne C, Ferrucci L, Semba RD. 2018. The human eye proteome project: updates on an emerging proteome. Proteomics. 18(5–6):e1700394. doi: 10.1002/pmic.201700394.
  • Ahmed I. 2003. The noncorneal route in ocular drug delivery. Drugs Pharm Sci. 130:335–364.
  • Al-Ghananeem AM, Crooks PA. 2007. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules. 12(3):373–388. doi: 10.3390/12030373.
  • Appleyard ME, McDonald B, Benjamin L. 1991. Presence of a soluble form of acetylcholinesterase in human ocular fluids. Br J Ophthalmol. 75(5):276–279. doi: 10.1136/bjo.75.5.276.
  • Argikar UA, Dumouchel JL, Dunne CE, Bushee AJ. 2017. Ocular non-P450 oxidative, reductive, hydrolytic, and conjugative drug metabolizing enzymes. Drug Metab Rev. 49(3):372–394. doi: 10.1080/03602532.2017.1322609.
  • Balhara A, Basit A, Argikar UA, Dumouchel JL, Singh S, Prasad B. 2021. Comparative proteomics analysis of the postmitochondrial supernatant fraction of human lens-free whole eye and liver. Drug Metab Dispos. 49(7):592–600. doi: 10.1124/dmd.120.000297.
  • Barot M, Bagui M, Gokulgandhi MR, Mitra AK. 2012. Prodrug strategies in ocular drug delivery. Med Chem. 8(4):753–768. doi: 10.2174/157340612801216283.
  • Bennett HM, Stephenson W, Rose CM, Darmanis S. 2023. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat Methods. 20(3):363–374. doi: 10.1038/s41592-023-01791-5.
  • Bharathidevi SR, Babu KA, Jain N, Muthukumaran S, Umashankar V, Biswas J, Angayarkanni N. 2017. Ocular distribution of antioxidant enzyme paraoxonase & its alteration in cataractous lens & diabetic retina. Indian J Med Res. 145(4):513–520.
  • Bhattacharjee J, Sanyal S. 1975. Developmental changes of esterases in the retina of the mouse: histochemical study. Histochemistry. 46(1):53–60. doi: 10.1007/BF02463560.
  • Bienert A, Kamińska A, Olszewski J, Gracz J, Grabowski T, Wolc A, Grześkowiak E. 2012. Pharmacokinetics and ocular disposition of paracetamol and paracetamol glucuronide in rabbits with diabetes mellitus induced by alloxan. Pharmacol Rep. 64(2):421–427. doi: 10.1016/S1734-1140(12)70783-1.
  • Bodor N, ElKoussi A, Kano M, Nakamura T. 1988. Improved delivery through biological membranes. 26. Design, synthesis, and pharmacological activity of a novel chemical delivery system for beta-adrenergic blocking agents. J Med Chem. 31(1):100–106. doi: 10.1021/jm00396a015.
  • Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ. 2000. Role of quinones in toxicology. Chem Res Toxicol. 13(3):135–160. doi: 10.1021/tx9902082.
  • Bourne R, Steinmetz JD, Flaxman S, Briant PS, Taylor HR, Resnikoff S, Casson RJ, Abdoli A, Abu-Gharbieh E, Afshin A, et al. 2021. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the global burden of disease study. Lancet Global Health. 9(2):e130–e143. doi: 10.1016/S2214-109X(20)30425-3.
  • Burgess A, Azad T, Pathak N, Amin V, Gupta SV. 2018. Transporter-targeted prodrug approach for retina and posterior segment disease. In: Patel JK, Sutariya V, Kanwar JR, Pathak YV, editors. Cham: Springer International Publishing; p. 309–316.
  • Cao Y, Samy KE, Bernards DA, Desai TA. 2019. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov Today. 24(8):1694–1700. doi: 10.1016/j.drudis.2019.05.031.
  • Chang S-C, Chien D-S, Bundgaard H, Lee VH. 1988. Relative effectiveness of prodrug and viscous solution approaches in maximizing the ratio of ocular to systemic absorption of topically applied timolol. Exp Eye Res. 46(1):59–69. doi: 10.1016/S0014-4835(88)80093-9.
  • Chang S-C, Lee VH. 1982. Influence of chain length on the in vitro hydrolysis of model ester prodrugs by ocular esterases. Curr Eye Res. 2(10):651–656. doi: 10.3109/02713688209019993.
  • Chastain JE. 2022. Ocular pharmacokinetics. In: Ohia SE, Sharif NA, editors. Handbook of basic and clinical ocular pharmacology and therapeutics. New York (NY): Academic Press, Elsevier; p. 179–219.
  • Chetoni P, Crotti P, Saettone MF. 1994. Albuterol prodrugs for ocular administration: synthesis and evaluation of the physico-chemical and IOP-depressant properties of three albuterol triesters. Int J Pharm. 105(2):147–155. doi: 10.1016/0378-5173(94)90460-X.
  • Chien D-S, Schoenwald RD. 1990. Ocular pharmacokinetics and pharmacodynamics of phenylephrine and phenylephrine oxazolidine in rabbit eyes. Pharm Res. 7(5):476–483. doi: 10.1023/a:1015808514727.
  • Chowdhury UR, Madden BJ, Charlesworth MC, Fautsch MP. 2010. Proteome analysis of human aqueous humor. Invest Ophthalmol Vis Sci. 51(10):4921–4931. doi: 10.1167/iovs.10-5531.
  • Cirello AL, Dumouchel JL, Gunduz M, Dunne CE, Argikar UA. 2017. In vitro ocular metabolism and bioactivation of ketoconazole in rat, rabbit and human. Drug Metab Pharmacokinet. 32(2):121–126. doi: 10.1016/j.dmpk.2016.11.001.
  • Coupland SE, Penfold PL, Billson FA. 1994. Hydrolases of anterior segment tissues in the normal human, pig and rat eye: a comparative study. Graefe’s Arch Clin Exp Ophthalmol. 232(3):182–191. doi: 10.1007/BF00176789.
  • Dammalli M, Murthy KR, Pinto SM, Murthy KB, Nirujogi RS, Madugundu AK, Dey G, Nair B, Gowda H, Keshava Prasad TS. 2017. Toward postgenomics ophthalmology: a proteomic map of the human choroid-retinal pigment epithelium tissue. OMICS. 21(2):114–122. doi: 10.1089/omi.2016.0170.
  • Davies SS, Ju W-K, Neufeld AH, Abran D, Chemtob S, Roberts LJ. 2003. Hydrolysis of bimatoprost (Lumigan) to its free acid by ocular tissue in vitro. J Ocular Pharmacol Ther. 19(1):45–54. doi: 10.1089/108076803762718105.
  • Deakin SP, Bioletto S, Bochaton-Piallat M-L, James RW. 2011. HDL-associated paraoxonase-1 can redistribute to cell membranes and influence sensitivity to oxidative stress. Free Radic Biol Med. 50(1):102–109. doi: 10.1016/j.freeradbiomed.2010.09.002.
  • Del Amo EM, Hammid A, Tausch M, Toropainen E, Sadeghi A, Valtari A, Puranen J, Reinisalo M, Ruponen M, Urtti A, et al. 2022. Ocular metabolism and distribution of drugs in the rabbit eye: quantitative assessment after intracameral and intravitreal administrations. Int J Pharm. 613:121361. doi: 10.1016/j.ijpharm.2021.121361.
  • Del Amo EM, Rimpelä A-K, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, et al. 2017. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 57:134–185. doi: 10.1016/j.preteyeres.2016.12.001.
  • Del Amo EM, Urtti A. 2015. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res. 137:111–124. doi: 10.1016/j.exer.2015.05.003.
  • Di L. 2019. The impact of carboxylesterases in drug metabolism and pharmacokinetics. Curr Drug Metab. 20(2):91–102. doi: 10.2174/1389200219666180821094502.
  • Dias C, Nashed Y, Atluri H, Mitra A. 2002. Ocular penetration of acyclovir and its peptide prodrugs valacyclovir and val-valacyclovir following systemic administration in rabbits: an evaluation using ocular microdialysis and LC–MS. Curr Eye Res. 25(4):243–252. doi: 10.1076/ceyr.25.4.243.13488.
  • Diwan P, Jangde R, Khunte S, Bhardwaj H, Suresh PK. 2022. Ocular drug delivery system. In: Akhtar J, Badruddeen, Ahmad M, Irfan Khan M, editors. Drug development life cycle. London (UK): IntechOpen; p. 84044.
  • Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN. 2005. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 46(6):1239–1247. doi: 10.1194/jlr.M400511-JLR200.
  • Druzgala P, Wu W-M, Bodor N. 1991. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res. 10(10):933–937. doi: 10.3109/02713689109020329.
  • Dumouchel JL, Chemuturi N, Milton MN, Camenisch G, Chastain J, Walles M, Sasseville V, Gunduz M, Iyer GR, Argikar UA. 2018. Models and approaches describing the metabolism, transport, and toxicity of drugs administered by the ocular route. Drug Metab Dispos. 46(11):1670–1683. doi: 10.1124/dmd.118.082974.
  • Duzman E, Chen C-C, Anderson J, Blumenthal M, Twizer H. 1982. Diacetyl derivative of nadolol: I. Ocular pharmacology and short-term ocular hypotensive effect in glaucomatous eyes. Arch Ophthalmol. 100(12):1916–1919. doi: 10.1001/archopht.1982.01030040896005.
  • Dyrlund TF, Poulsen ET, Scavenius C, Nikolajsen CL, Thøgersen IB, Vorum H, Enghild JJ. 2012. Human cornea proteome: identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J Proteome Res. 11(8):4231–4239. doi: 10.1021/pr300358k.
  • Ellis PP, Littlejohn K, Deitrich RA. 1972. Enzymatic hydrolysis of pilocarpine. Invest Ophthalmol. 11(9):747–751.
  • Fayyaz A, Ranta VP, Toropainen E, Vellonen KS, Ricci GD, Reinisalo M, Heikkinen EM, Gardner I, Urtti A, Jamei M, et al. 2020. Ocular intracameral pharmacokinetics for a cocktail of timolol, betaxolol, and atenolol in rabbits. Mol Pharm. 17(2):588–594. doi: 10.1021/acs.molpharmaceut.9b01024.
  • Fayyaz A, Ranta V-P, Toropainen E, Vellonen K-S, Valtari A, Puranen J, Ruponen M, Gardner I, Urtti A, Jamei M, et al. 2020. Topical ocular pharmacokinetics and bioavailability for a cocktail of atenolol, timolol and betaxolol in rabbits. Eur J Pharm Sci. 155:105553. doi: 10.1016/j.ejps.2020.105553.
  • Flaxel CJ, Mulholland B, Haynes B, Gregor ZJ. 2000. Intraocular penetration of tamoxifen. Ophthalmology. 107(11):2006–2009. doi: 10.1016/S0161-6420(00)00364-X.
  • Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, et al. 2017. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Global Health. 5(12):e1221–e1234. doi: 10.1016/S2214-109X(17)30393-5.
  • Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Rodrigues LB, Bravo R, Castilho RO, Yoshida MI, Cardoso VN, Fernandes SO, et al. 2014. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLOS One. 9(4):e95461. doi: 10.1371/journal.pone.0095461.
  • Fukami T, Kariya M, Kurokawa T, Iida A, Nakajima M. 2015. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases. Eur J Pharm Sci. 78:47–53. doi: 10.1016/j.ejps.2015.07.006.
  • Fukami T, Yokoi T, Nakajima M. 2022. Non-P450 drug-metabolizing enzymes: contribution to drug disposition, toxicity, and development. Annu Rev Pharmacol Toxicol. 62(1):405–425. doi: 10.1146/annurev-pharmtox-052220-105907.
  • Furman M, Lazar M, Leopold IH. 1969. Cholinesterase isoenzymes in rabbit ocular tissue homogenates. Doc Ophthalmol. 26(1):185–191. doi: 10.1007/BF00943975.
  • Galiacy SD, Froment C, Mouton-Barbosa E, Erraud A, Chaoui K, Desjardins L, Monsarrat B, Malecaze F, Burlet-Schiltz O. 2011. Deeper in the human cornea proteome using nanoLC-Orbitrap MS/MS: an improvement for future studies on cornea homeostasis and pathophysiology. J Proteomics. 75(1):81–92. doi: 10.1016/j.jprot.2011.09.020.
  • Ganea E, Harding JJ. 2006. Glutathione-related enzymes and the eye. Curr Eye Res. 31(1):1–11. doi: 10.1080/02713680500477347.
  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. 2010. Ocular drug delivery. AAPS J. 12(3):348–360. doi: 10.1208/s12248-010-9183-3.
  • Ghia M, Lotti R, Traverso C, Mattioli F, Martelli A. 1997. Penetration of oral cefuroxime axetil into the human aqueous humor. Ophthalmologica. 211(4):229–231. doi: 10.1159/000310796.
  • Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, et al. 2013. Characterizing the normal proteome of human ciliary body. Clin Proteomics. 10(1):9. doi: 10.1186/1559-0275-10-9.
  • Hains PG, Truscott RJ. 2010. Age-dependent deamidation of lifelong proteins in the human lens. Invest Ophthalmol Vis Sci. 51(6):3107–3114. doi: 10.1167/iovs.09-4308.
  • Hammid A, Fallon JK, Lassila T, Salluce G, Smith PC, Tolonen A, Sauer A, Urtti A, Honkakoski P. 2021. Carboxylesterase activities and protein expression in rabbit and pig ocular tissues. Mol Pharm. 18(3):1305–1316. doi: 10.1021/acs.molpharmaceut.0c01154.
  • Hammid A, Fallon JK, Lassila T, Vieiro P, Balla A, Gonzalez F, Urtti A, Smith PC, Tolonen A, Honkakoski P. 2022. Activity and expression of carboxylesterases and arylacetamide deacetylase in human ocular tissues. Drug Metab Dispos. 50(12):1483–1492. doi: 10.1124/dmd.122.000993.
  • Hammid A, Fallon JK, Vellonen KS, Lassila T, Reinisalo M, Urtti A, Gonzalez F, Tolonen A, Smith PC, Honkakoski P. 2023. Aldehyde oxidase 1 activity and protein expression in human, rabbit, and pig ocular tissues. Eur J Pharm Sci. 191:106603. doi: 10.1016/j.ejps.2023.106603.
  • Harel M, Aharoni A, Gaidukov L, Brumshtein B, Khersonsky O, Meged R, Dvir H, Ravelli RBG, McCarthy A, Toker L, et al. 2004. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol. 11(5):412–419. doi: 10.1038/nsmb767.
  • Heikkinen EM, Del Amo EM, Ranta VP, Urtti A, Vellonen KS, Ruponen M. 2018. Esterase activity in porcine and albino rabbit ocular tissues. Eur J Pharm Sci. 123:106–110. doi: 10.1016/j.ejps.2018.07.034.
  • Heikkinen EM, Ruponen M, Jasper L-M, Leppänen J, Hellinen L, Urtti A, Auriola S, Rautio J, Vellonen K-S. 2020. Prodrug approach for posterior eye drug delivery: synthesis of novel ganciclovir prodrugs and in vitro screening with cassette dosing. Mol Pharm. 17(6):1945–1953. doi: 10.1021/acs.molpharmaceut.0c00037.
  • Hellberg MR, Ke T-L, Haggard K, Klimko PG, Dean TR, Graff G. 2003. The hydrolysis of the prostaglandin analog prodrug bimatoprost to 17-phenyl-trinor PGF2α by human and rabbit ocular tissue. J Ocular Pharmacol Ther. 19(2):97–103. doi: 10.1089/108076803321637627.
  • Hosseini K, Matsushima D, Johnson J, Widera G, Nyam K, Kim L, Xu Y, Yao Y, Cormier M. 2008. Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocular Pharmacol Ther. 24(3):301–308. doi: 10.1089/jop.2007.0117.
  • Huttunen KM, Rautio J. 2011. Prodrugs—an efficient way to breach delivery and targeting barriers. Curr Top Med Chem. 11(18):2265–2287. doi: 10.2174/156802611797183230.
  • Ichhpujani P, Katz LJ, Hollo G, Shields CL, Shields JA, Marr B, Eagle R, Alvim H, Wizov SS, Acheampong A, et al. 2012. Comparison of human ocular distribution of bimatoprost and latanoprost. J Ocular Pharmacol Ther. 28(2):134–145. doi: 10.1089/jop.2011.0097.
  • Imai T, Taketani M, Shii M, Hosokawa M, Chiba K. 2006. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab Dispos. 34(10):1734–1741. doi: 10.1124/dmd.106.009381.
  • Järvinen T, Poikolainen M, Suhonen P, Vepsäläinen J, Alaranta S, Urtti A. 1995. Comparison of enzymatic hydrolysis of pilocarpine prodrugs in human plasma, rabbit cornea, and butyrylcholinesterase solutions. J Pharm Sci. 84(5):656–660. doi: 10.1002/jps.2600840525.
  • Kaluzhny Y, Kinuthia MW, Truong T, Lapointe AM, Hayden P, Klausner M. 2018. New human organotypic corneal tissue model for ophthalmic drug delivery studies. Investig Ophthalmol Vis Sci. 59(7):2880–2898.
  • Kawakami S, Yamamura K, Mukai T, Nishida K, Nakamura J, Sakaeda T, Nakashima M, Sasaki H. 2001. Sustained ocular delivery of tilisolol to rabbits after topical administration or intravitreal injection of lipophilic prodrug incorporated in liposomes. J Pharm Pharmacol. 53(8):1157–1161. doi: 10.1211/0022357011776423.
  • Keating GM. 2013. Intracameral cefuroxime: prophylaxis of postoperative endophthalmitis after cataract surgery. Drugs. 73(2):179–186. doi: 10.1007/s40265-013-0011-9.
  • Khojasteh SC, Wong H, Hop CECA. 2011. Drug metabolizing enzymes. In: Drug metabolism and pharmacokinetics quick guide. New York (NY): Springer; p. 17–46. doi: 10.1007/978-1-4419-5629-3_2.
  • Kidron H, Vellonen K-S, Del Amo EM, Tissari A, Urtti A. 2010. Prediction of the corneal permeability of drug-like compounds. Pharm Res. 27(7):1398–1407. doi: 10.1007/s11095-010-0132-8.
  • Kishida K, Matsumoto K, Manabe R, Sugiyama T. 1986. Cytochrome P-450 and related components of the microsomal electron transport system in the bovine ciliary body. Curr Eye Res. 5(7):529–533. doi: 10.3109/02713688608996376.
  • Kobayashi Y, Fukami T, Nakajima A, Watanabe A, Nakajima M, Yokoi T. 2012. Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse. Drug Metab Dispos. 40(4):671–679. doi: 10.1124/dmd.111.043067.
  • Kölln C, Reichl S. 2012. mRNA expression of metabolic enzymes in human cornea, corneal cell lines, and hemicornea constructs. J Ocular Pharmacol Ther. 28(3):271–277. doi: 10.1089/jop.2011.0124.
  • Kölln C, Reichl S. 2016. Expression of glutathione transferases in corneal cell lines, corneal tissues and a human cornea construct. Int J Pharm. 506(1–2):371–381. doi: 10.1016/j.ijpharm.2016.04.053.
  • Kour J, Kumari N, Sapra B. 2021. Ocular prodrugs: attributes and challenges. Asian J Pharm Sci. 16(2):175–191. doi: 10.1016/j.ajps.2020.08.002.
  • Laizure SC, Herring V, Hu Z, Witbrodt K, Parker RB. 2013. The role of human carboxylesterases in drug metabolism: have we overlooked their importance? Pharmacotherapy. 33(2):210–222. doi: 10.1002/phar.1194.
  • Laude A, Tan LE, Wilson CG, Lascaratos G, Elashry M, Aslam T, Patton N, Dhillon B. 2010. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 29(6):466–475. doi: 10.1016/j.preteyeres.2010.04.003.
  • Lee VH, Iimoto DS, Takemoto KA. 1982. Subcellular distribution of esterases in the bovine eye. Curr Eye Res. 2(12):869–876. doi: 10.3109/02713688209020024.
  • Lee VH, Li VH. 1989. Prodrugs for improved ocular drug delivery. Adv Drug Deliv Rev. 3(1):1–38. doi: 10.1016/0169-409X(89)90003-3.
  • Lee VH, Stratford REJr, Morimoto KW. 1983. Age-related changes in esterase activity in rabbit eyes. Int J Pharm. 13(2):183–195. doi: 10.1016/0378-5173(83)90005-4.
  • Lee VH. 2019. Improved ocular drug delivery by use of chemical modification (prodrugs). In: Edman P, editor. Biopharmaceutics of ocular drug delivery. Boca Raton: CRC Press; p. 121–143.
  • Lee VHI. 1983. Esterase activities in adult rabbit eyes. J Pharm Sci. 72(3):239–244. doi: 10.1002/jps.2600720310.
  • Lee VHL, Chang S-C, Oshiro CM, Smith RE. 1985. Ocular esterase composition in albino and pigmented rabbits: possible implications in ocular prodrug design and evaluation. Curr Eye Res. 4(11):1117–1125. doi: 10.3109/02713688509003358.
  • Lee VH‐L, Morimoto KW, Stratford RE. 1982. Esterase distribution in the rabbit cornea and its implications in ocular drug bioavailability. Biopharm Drug Dispos. 3(4):291–300. doi: 10.1002/bdd.2510030402.
  • Lehr C-M, Lee Y-H, Lee VH. 1994. Improved ocular penetration of gentamicin by mucoadhesive polymer polycarbophil in the pigmented rabbit. Investig Ophthalmol Vis Sci. 35(6):2809–2814.
  • Leopold IH, Furman M. 1971. Cholinesterase isoenzymes in human ocular tissue homogenates. Am J Ophthalmol. 72(2):460–463. doi: 10.1016/0002-9394(71)91320-1.
  • Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. 2021. Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers. Front Chem. 9:813359. doi: 10.3389/fchem.2021.813359.
  • Lian J, Bahitham W, Panigrahi R, Nelson R, Li L, Watts R, Thiesen A, Lemieux MJ, Lehner R. 2018. Genetic variation in human carboxylesterase CES1 confers resistance to hepatic steatosis. Biochim Biophys Acta Mol Cell Biol Lipids. 1863(7):688–699.
  • Loftsson T. 2022. Topical drug delivery to the retina: obstacles and routes to success. Expert Opin Drug Deliv. 19(1):9–21. doi: 10.1080/17425247.2022.2017878.
  • Loukovaara S, Nurkkala H, Tamene F, Gucciardo E, Liu X, Repo P, Lehti K, Varjosalo M. 2015. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J Proteome Res. 14(12):5131–5143. doi: 10.1021/acs.jproteome.5b00900.
  • Luo RH, Tram NK, Parekh AM, Puri R, Reilly MA, Swindle-Reilly KE. 2023. The roles of vitreous biomechanics in ocular disease, biomolecule transport, and pharmacokinetics. Curr Eye Res. 48(2):195–207. doi: 10.1080/02713683.2022.2033271.
  • Macha S, Duvvuri S, Mitra AK. 2004. Ocular disposition of novel lipophilic diester prodrugs of ganciclovir following intravitreal administration using microdialysis. Curr Eye Res. 28(2):77–84. doi: 10.1076/ceyr.28.2.77.26233.
  • Macha S, Mitra AK. 2002. Ocular disposition of ganciclovir and its monoester prodrugs following intravitreal administration using microdialysis. Drug Metab Dispos. 30(6):670–675. doi: 10.1124/dmd.30.6.670.
  • Marsillach J, Mackness B, Mackness M, Riu F, Beltrán R, Joven J, Camps J. 2008. Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med. 45(2):146–157. doi: 10.1016/j.freeradbiomed.2008.03.023.
  • Maurice DM, Mishima S. 1984. Ocular pharmacokinetics. In: Sears ML, editor. Pharmacology of the eye. Vol. 69. Berlin-Heidelberg: Springer; p. 19–116.
  • Miller L, Stier M, Lovenberg W. 1980. Evidence for the presence of N-acetyl transferase in rat retina. Comp Biochem Physiol C Comp Pharmacol. 66(2):213–216. doi: 10.1016/0306-4492(80)90129-X.
  • Mirzaei M, Gupta VB, Chick JM, Greco TM, Wu Y, Chitranshi N, Wall RV, Hone E, Deng L, Dheer Y, et al. 2017. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep. 7(1):12685. doi: 10.1038/s41598-017-12858-7.
  • Missel PJ. 2012. Simulating intravitreal injections in anatomically accurate models for rabbit, monkey, and human eyes. Pharm Res. 29(12):3251–3272. doi: 10.1007/s11095-012-0721-9.
  • Mochizuki H, Scherer SW, Xi T, Nickle DC, Majer M, Huizenga JJ, Tsui L-C, Prochazka M. 1998. Human PON2 gene at 7q21. 3: cloning, multiple mRNA forms, and missense polymorphisms in the coding sequence. Gene. 213(1–2):149–157. doi: 10.1016/s0378-1119(98)00193-0.
  • Morrison PWJ, Khutoryanskiy VV. 2014. Anatomy of the eye and the role of ocular mucosa in drug delivery. In: Khutoryanskiy VV, editor. Mucoadhesive materials and drug delivery systems. 1st ed.Hoboken (NJ): Wiley Online Library; p. 39–60. doi: 10.1002/9781118794203.ch02.
  • Mu X, Yi X, Xiao S, Wang C, Chen G, Li Y. 2018. Substrates for paraoxonase. Curr Pharm Des. 24(5):615–627. doi: 10.2174/1381612824666171213102310.
  • Murthy KR, Dammalli M, Pinto SM, Murthy KB, Nirujogi RS, Madugundu AK, Dey G, Subbannayya Y, Mishra UK, Nair B, et al. 2016. A comprehensive proteomics analysis of the human iris tissue: ready to embrace postgenomics precision medicine in ophthalmology? OMICS. 20(9):510–519. doi: 10.1089/omi.2016.0100.
  • Nakajima A, Fukami T, Kobayashi Y, Watanabe A, Nakajima M, Yokoi T. 2011. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol. 82(11):1747–1756. doi: 10.1016/j.bcp.2011.08.003.
  • Navratil T, Garcia A, Verhoeven RS, Trevino L, Gilger BC, Mansberger SL, Budenz DL, Ahmed IIK, Lewis RA, Yerxa BR. 2015. Advancing ENV515 (travoprost) intracameral implant into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. Investig Ophthalmol Vis Sci. 56(7):5706.
  • Niemi R, Huuskonen J, Laine K, Järvinen T. 2005. Synthesis, hydrolysis, and intraocular pressure lowering effects of fadolmidine prodrugs. Int J Pharm. 295(1–2):121–127. doi: 10.1016/j.ijpharm.2005.02.002.
  • Oh C, Saville BA, Cheng YL, Rootman DS. 1995. A compartmental model for the ocular pharmacokinetics of cyclosporine in rabbits. Pharm Res. 12:433–437.
  • Patane MA, Schubert W, Sanford T, Gee R, Burgos M, Isom WP, Ruiz-Perez B. 2013. Evaluation of ocular and general safety following repeated dosing of dexamethasone phosphate delivered by transscleral iontophoresis in rabbits. J Ocular Pharmacol Ther. 29(8):760–769. doi: 10.1089/jop.2012.0175.
  • Peynshaert K, Devoldere J, De Smedt SC, Remaut K. 2018. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev. 126:44–57. doi: 10.1016/j.addr.2017.09.007.
  • Pikuleva IA. 2023. Challenges and opportunities in p450 research on the eye. Drug Metab Dispos. 51(10):1295–1307. doi: 10.1124/dmd.122.001072.
  • Pitkänen L, Ranta V-P, Moilanen H, Urtti A. 2005. Permeability of retinal pigment epithelium: effects of permeant molecular weight and lipophilicity. Invest Ophthalmol Vis Sci. 46(2):641–646. doi: 10.1167/iovs.04-1051.
  • Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran T-D. 2010. Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem. 53(24):8441–8460. doi: 10.1021/jm100888d.
  • Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T, Savolainen J. 2008. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 7(3):255–270. doi: 10.1038/nrd2468.
  • Rautio J, Meanwell NA, Di L, Hageman MJ. 2018. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov. 17(8):559–587. doi: 10.1038/nrd.2018.46.
  • Reddy ST, Wadleigh DJ, Grijalva V, Ng C, Hama S, Gangopadhyay A, Shih DM, Lusis AJ, Navab M, Fogelman AM. 2001. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol. 21(4):542–547. doi: 10.1161/01.ATV.21.4.542.
  • Redell MA, Yang DC, Lee VH. 1983. The role of esterase activity in the ocular disposition of dipivalyl epinephrine in rabbits. Int J Pharm. 17(2–3):299–312. doi: 10.1016/0378-5173(83)90041-8.
  • Rimpelä A-K, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, Del Amo EM. 2018. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev. 126:23–43. doi: 10.1016/j.addr.2017.12.008.
  • Robert P-Y, Adenis J-P. 2001. Comparative review of topical ophthalmic antibacterial preparations. Drugs. 61(2):175–185. doi: 10.2165/00003495-200161020-00003.
  • Rodrigues GA, Lutz D, Shen J, Yuan X, Shen H, Cunningham J, Rivers HM. 2018. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 35(12):245. doi: 10.1007/s11095-018-2519-x.
  • Romanelli L, Valeri P, Morrone LA, Pimpinella G. 1991. Ocular disposition of acetaminophen and its metabolites following intravenous administration in rabbits. J Ocul Pharmacol. 7(4):339–350. doi: 10.1089/jop.1991.7.339.
  • Rosenblat M, Coleman R, Reddy ST, Aviram M. 2009. Paraoxonase 2 attenuates macrophage triglyceride accumulation via inhibition of diacylglycerol acyltransferase 1. J Lipid Res. 50(5):870–879. doi: 10.1194/jlr.M800550-JLR200.
  • Saarinen-Savolainen P, Järvinen T, Suhonen P, Urtti A. 1996. Amphiphilic properties of pilocarpine prodrugs. Int J Pharm. 133(1–2):171–178. doi: 10.1016/0378-5173(96)04438-9.
  • Salmon JF. 2019. Kanski’s clinical ophthalmology e-book: a systematic approach. Oxford (UK): Elsevier Health Sciences.
  • Sampat KM, Garg SJ. 2010. Complications of intravitreal injections. Curr Opin Ophthalmol. 21(3):178–183. doi: 10.1097/ICU.0b013e328338679a.
  • Sánchez‐Chávez G, Vidal CJ, Salceda R. 1995. Acetyl‐ and butyrylcholinesterase activities in the rat retina and retinal pigment epithelium. J Neurosci Res. 41(5):655–662. doi: 10.1002/jnr.490410512.
  • Sanghani SP, Sanghani PC, Schiel MA, Bosron WF. 2009. Human carboxylesterases: an update on CES1, CES2 and CES3. Protein Pept Lett. 16(10):1207–1214. doi: 10.2174/092986609789071324.
  • Sato Y, Miyashita A, Iwatsubo T, Usui T. 2012. Simultaneous absolute protein quantification of carboxylesterases 1 and 2 in human liver tissue fractions using liquid chromatography–tandem mass spectrometry. Drug Metab Dispos. 40(7):1389–1396. doi: 10.1124/dmd.112.045054.
  • Satoh T, Hosokawa M. 1998. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol. 38(1):257–288. doi: 10.1146/annurev.pharmtox.38.1.257.
  • Satoh T, Hosokawa M. 2006. Structure, function and regulation of carboxylesterases. Chem Biol Interact. 162(3):195–211. doi: 10.1016/j.cbi.2006.07.001.
  • Schmidt Laugesen C, Steffansen B, Scherfig E, La Cour M. 2005. Pharmacokinetics of intravitreal 5-fluorouracil prodrugs in silicone oil: experimental studies in pigs. Acta Ophthalmol Scand. 83(2):184–190. doi: 10.1111/j.1600-0420.2005.00429.x.
  • Schoenwald RD, Harris RG, Turner D, Knowles W, Chien D‐S. 1987. Ophthalmic bioequivalence of steroid/antibiotic combination formulations. Biopharm Drug Dispos. 8(6):527–548. doi: 10.1002/bdd.2510080605.
  • Schoenwald RD, Huang H-S. 1983. Corneal penetration behavior of β-blocking agents I: physicochemical factors. J Pharm Sci. 72(11):1266–1272. doi: 10.1002/jps.2600721108.
  • Schwartzman ML, Masferrer J, Dunn MW, McGiff JC, Abraham NG. 1987. Cytochrome P450, drug metabolizing enzymes and arachidonic acid metabolism in bovine ocular tissues. Curr Eye Res. 6(4):623–630. doi: 10.3109/02713688709025223.
  • Shen YC, Wang MY, Wang CY, Tsai TC, Tsai HY, Lee HN, Wei LC. 2009. Pharmacokinetics of intracameral voriconazole injection. Antimicrob Agents Chemother. 53(5):2156–2157. doi: 10.1128/AAC.01125-08.
  • Sheng Y, Yang X, Pal D, Mitra AK. 2015. Prodrug approach to improve absorption of prednisolone. Int J Pharm. 487(1–2):242–249. doi: 10.1016/j.ijpharm.2015.04.029.
  • Shichi H, Nebert DW. 1982. Genetic differences in drug metabolism associated with ocular toxicity. Environ Health Perspect. 44:107–117. doi: 10.2307/3429483.
  • Shimada S, Mishima H, Kitamura S, Tatsumi K. 1987. Nicotinamide N-oxide reductase activity in bovine and rabbit eyes. Invest Ophthalmol Vis Sci. 28(7):1204–1206.
  • Shimada S, Mishima HK, Nikaido H, Kitamura S, Tatsumi K. 1989. Purification of aldehyde oxidase from bovine ciliary body. Curr Eye Res. 8(7):721–726. doi: 10.3109/02713688909025807.
  • Sjöquist B, Basu S, Byding P, Bergh K, Stjernschantz J. 1998. The pharmacokinetics of a new antiglaucoma drug, latanoprost, in the rabbit. Drug Metab Dispos. 26(8):745–754.
  • Skeie JM, Mahajan VB. 2014. Proteomic landscape of the human choroid–retinal pigment epithelial complex. JAMA Ophthalmol. 132(11):1271–1281. doi: 10.1001/jamaophthalmol.2014.2065.
  • Skeie JM, Roybal CN, Mahajan VB. 2015. Proteomic insight into the molecular function of the vitreous. PLOS One. 10(5):e0127567. doi: 10.1371/journal.pone.0127567.
  • Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, Abdoli AA, Abrha WA, Abualhasan A, Abu-Gharbieh EG, et al. 2021. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the Global Burden of Disease Study. Lancet Global Health. 9(2):e144–e160. doi: 10.1016/S2214-109X(20)30489-7.
  • Subrizi A, Del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. 2019. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 24(8):1446–1457. doi: 10.1016/j.drudis.2019.02.001.
  • Suhonen P, Järvinen T, Rytkönen P, Peura P, Urtti A. 1991. Improved corneal pilocarpine permeability with O,O′-(1,4-xylylene) bispilocarpic acid ester double prodrugs. Pharm Res. 8(12):1539–1542. doi: 10.1023/A:1015806802973.
  • Sun Q, Zhu R, Foss FW, Macdonald TL. 2008. In vitro metabolism of a model cyclopropylamine to reactive intermediate: insights into trovafloxacin-induced hepatotoxicity. Chem Res Toxicol. 21(3):711–719. doi: 10.1021/tx7003085.
  • Terao M, Romão MJ, Leimkühler S, Bolis M, Fratelli M, Coelho C, Santos-Silva T, Garattini E. 2016. Structure and function of mammalian aldehyde oxidases. Arch Toxicol. 90(4):753–780. doi: 10.1007/s00204-016-1683-1.
  • Tirucherai GS, Dias C, Mitra AK. 2002. Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J Ocular Pharmacol Ther. 18(6):535–548. doi: 10.1089/108076802321021081.
  • Tsuji A, Tamai I, Sasaki K. 1987. Hydrolysis of prednisolone succinate by esterase in rabbit ocular tissue. Ophthalmic Res. 19(6):322–329. doi: 10.1159/000265516.
  • Urtti A. 2006. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 58(11):1131–1135. doi: 10.1016/j.addr.2006.07.027.
  • Vellonen K-S, Hellinen L, Mannermaa E, Ruponen M, Urtti A, Kidron H. 2018. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev. 126:3–22. doi: 10.1016/j.addr.2017.12.009.
  • Wang D-D, Jin Q, Zou L-W, Hou J, Lv X, Lei W, Cheng H-L, Ge G-B, Yang L. 2016. A bioluminescent sensor for highly selective and sensitive detection of human carboxylesterase 1 in complex biological samples. Chem Commun. 52(15):3183–3186. doi: 10.1039/C5CC09874B.
  • Wang J, Williams ET, Bourgea J, Wong YN, Patten CJ. 2011. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2. Drug Metab Dispos. 39(8):1329–1333. doi: 10.1124/dmd.111.039628.
  • Wang W, Bundgaard H, Buur A, Lee VH. 1991. Corneal penetration of 5-fluorouracil and its improvement by prodrug derivatization in the albino rabbit: implication in glaucoma filtration surgery. Curr Eye Res. 10(1):87–97. doi: 10.3109/02713689109007613.
  • Wang Z, Han J, David LL, Schey KL. 2013. Proteomics and phosphoproteomics analysis of human lens fiber cell membranes. Invest Ophthalmol Vis Sci. 54(2):1135–1143. doi: 10.1167/iovs.12-11168.
  • Watanabe A, Fukami T, Nakajima M, Takamiya M, Aoki Y, Yokoi T. 2009. Human arylacetamide deacetylase is a principal enzyme in flutamide hydrolysis. Drug Metab Dispos. 37(7):1513–1520. doi: 10.1124/dmd.109.026567.
  • Watanabe A, Fukami T, Takahashi S, Kobayashi Y, Nakagawa N, Nakajima M, Yokoi T. 2010. Arylacetamide deacetylase is a determinant enzyme for the difference in hydrolase activities of phenacetin and acetaminophen. Drug Metab Dispos. 38(9):1532–1537. doi: 10.1124/dmd.110.033720.
  • Watkins JB, Wirthwein DP, Sanders RA. 1991. Comparative study of phase II biotransformation in rabbit ocular tissues. Drug Metab Dispos. 19(3):708–713.
  • Wei C, Anderson JA, Leopold I. 1978. Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Investig Ophthalmol Vis Sci. 17(4):315–321.
  • [WHO] World Health Organization. 2019. World report on vision. [updated 2019 Oct 8; accessed 2024 May 30]. https://www.who.int/publications-detail/ world-report-on-vision.
  • Wolf J, Boneva S, Schlecht A, Lapp T, Auw-Haedrich C, Lagrèze W, Agostini H, Reinhard T, Schlunck G, Lange C. 2022. The human eye transcriptome atlas: a searchable comparative transcriptome database for healthy and diseased human eye tissue. Genomics. 114(2):110286. doi: 10.1016/j.ygeno.2022.110286.
  • Yang L, Li X, Tang H, Gao Z, Zhang K, Sun K. 2019. A unique role of carboxylesterase 3 (Ces3) in β-adrenergic signaling-stimulated thermogenesis. Diabetes. 68(6):1178–1196. doi: 10.2337/db18-1210.
  • Zhang P, Dufresne C, Turner R, Ferri S, Venkatraman V, Karani R, Lutty GA, Van Eyk JE, Semba RD. 2015. The proteome of human retina. Proteomics. 15(4):836–840. doi: 10.1002/pmic.201400397.
  • Zhang P, Kirby D, Dufresne C, Chen Y, Turner R, Ferri S, Edward DP, Van Eyk JE, Semba RD. 2016. Defining the proteome of human iris, ciliary body, retinal pigment epithelium, and choroid. Proteomics. 16(7):1146–1153. doi: 10.1002/pmic.201500188.
  • Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. 2008. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: implications for ocular drug disposition. Drug Metab Dispos. 36(7):1300–1307. doi: 10.1124/dmd.108.021121.
  • Zimmerman TJ, Kooner K, Mordechai S, Fechtner DR. 1997. Textbook of ocular pharmacology. 3rd ed. Philadelphia (PA): Lippincott-Raven Williams & Wilkins.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.