512
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication and Properties of Conductive Chitosan/Polypyrrole Composite Fibers

, , , &

REFERENCES

  • Guo, B.; Glavas, L.; Albertsson, A.C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 2013, 38, 1263–1286.
  • Das, T.K.; Prusty, S. Review on conducting polymers and their applications. Polym.-Plast. Technol. Eng. 2012, 51, 1487–1500.
  • Schmidt, V.M.; Tegtmeyer, D.; Heitbaum, J. Conducting polymers as membranes with variable permeabilities for neutral compounds: polypyrrole and polyaniline in aqueous electrolytes. Adv. Mater. 1992, 4, 428–431.
  • Liu, Y.; Hu, J.; Zhuang, X.; Zhang, P.; Wei, Y.; Wang, X.; Chen, X. Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol. Biosci. 2012, 12, 241–250.
  • Kang, G.; Borgens, R.B.; Cho, Y. Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 2011, 27, 6179–6184.
  • Cen, L.; Neoh, K.G.; Li, Y.; Kang, E.T. Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer. Biomacromolecules 2004, 5, 2238–2246.
  • Svirskis, D.; Travas-Sejdic, J.; Rodgers, A.; Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Contr. Rel. 2010, 146, 6–15.
  • Runge, M.B.; Dadsetan, M.; Baltrusaitis, J.; Ruesink, T.; Lu, L.; Windebank, A.J.; Yaszemski, M.J. Development of electrically conductive oligo (polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration. Biomacromolecules 2010, 11, 2845–2853.
  • Cui, X.; Wiler, J.; Dzaman, M.; Altschuler, R.A.; Martin, D.C. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 2003, 24, 777–787.
  • Jakubiec, B.; Marois, Y.; Zhang, Z.; Roy, R.; Sigot-Luizard, M.F.; Dugré, F.J.; King, M.W.; Dao, L.; Laroche, G.; Guidoin, R. In vitro cellular response to polypyrrole-coated woven polyester fabrics: potential benefits of electrical conductivity. J. Biomed. Mater. Res. 1998, 41, 519–526.
  • Collazos-Castro, J.E.; Polo, J.L.; Hernández-Labrado, G.R.; Padial-Cañete, V.; García-Rama, C. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 2010, 31, 9244–9255.
  • Quigley, A.F.; Razal, J.M.; Thompson, B.C.; Moulton, S.E.; Kita, M.; Kennedy, E.L.; Clark, G.M.; Wallace, G.G.; Kapsa, R.M.I. A conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth. Adv. Mater. 2009, 21, 4393–4397.
  • Qi, F.; Wang, Y.; Ma, T.; Zhu, S.; Zeng, W.; Hu, X.; Liu, Z.; Huang, J.; Luo, Z. Electrical regulation of schwann cells using conductive polypyrrole/chitosan polymers. Biomaterials 2013, 34, 1799–1809.
  • Pelto, J.M.; Haimi, S.P.; Siljander, A.S.; Miettinen, S.S.; Tappura, K.M.; Higgins, M.J.; Wallace, G.G. Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy. Langmuir 2013, 29, 6099–6108.
  • Shi, G.X.; Rouabhia, M.; Wang, Z.X.; Dao, L.H.; Zhang, Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials. 2004, 25, 2477–2488.
  • Lee, J.Y.; Bashur, C.A.; Goldstein, A.S.; Schmidt, C.E. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30, 4325–4335.
  • Runge, M.B.; Dadsetan, M.; Baltrusaitis, J.; Knight, A.M.; Ruesink, T.; Lazcano, E.A.; Lu, L.; Windebank, A.J.; Yaszemski, M.J. The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration. Biomaterials 2010, 31, 5916–5926.
  • Li, M.Y.; Guo, Y.; Wei, Y.; MacDiarmid, A.G.; Lelkes, P.I. Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 2006, 27, 2705–2715.
  • Liu, X.; Yue, Z.L.; Higgins, M.J.; Wallace, G.G. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials 2011, 32, 7309–7317.
  • Nishizawa, M.; Kamiya, T.; Nozaki, H.; Kaji, H. Anisotropic growth of conducting polymers along heparin-modified surfaces. Langmuir 2007, 23, 8304–8307.
  • Kumar, M.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084.
  • Huang, W.; Wang, Y.; Zhang, S.; Huang, L.; Hua, D.; Zhu, X. A facile approach for controlled modification of chitosan under γ-ray irradiation for drug delivery. Macromolecules 2013, 46, 814–818.
  • Chalikwar, S.S.; Mene, B.S.; Pardeshi, C.V.; Belgamwar, V.S.; Surana, S.J. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and Ex Vivo characterization. Polym.-Plast. Technol. Eng. 2013, 52, 368–380.
  • Yeng, C.M.; Husseinsyah, S.; Ting, S.S. Modified corn cob filled chitosan biocomposite films. Polym.-Plast. Technol. Eng. 2013, 52, 1496–1502.
  • Peng, X.; Zhang, L. Surface fabrication of hollow microspheres from N-methylated chitosan cross-linked with gultaraldehyde. Langmuir 2005, 21, 1091–1095.
  • Thinakaran, S.; Loordhuswamy, A.M.; Viswanathan, N.; Rengaswami, G.D.V. Electro-induced coating of chitosan on centrifugal spun matrix—a hybrid composite for biomedical applications. Polym.-Plast. Technol. Eng. 2013, 52, 991–996.
  • Ryu, J.H.; Lee, Y.; Kong, W.H.; Kim, T.G.; Park, T.G.; Lee, H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 2011, 12, 2653–2659.
  • Aytimur, A.; Koçyiğit, S.; Uslu, İ. Synthesis and characterization of poly(vinyl alcohol)/poly(vinyl pyrrolidone)-iodine nanofibers with poloxamer 188 and chitosan. Polym.-Plast. Technol. Eng. 2013, 52, 661–666.
  • Lee, R.; Temmer, R.; Tammb, T.; Aabloo, A.; Kiefer, R. Renewable antioxidant properties of suspensible chitosan–polypyrrole composites. React. Funct. Polym. 2013, 73, 1072–1077.
  • Kim, S.J.; Kim, M.S.; Kim, S.I.; Spinks, G.M.; Kim, B.C.; Wallace, G.G. Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem. Mater. 2006, 18, 5805–5809.
  • Chen, Y.; Feng, H.; Li, L.; Shang, S.; Yuen, M. Synthesis and properties of polypyrrole/chitosan composite hydrogels. J. Macromol. Sci. Pt. A Pure Appl. Chem. 2013, 50, 1225–1229.
  • Liu, N.; Ma, W.; Tao, J.; Zhang, X.; Su, J.; Li, L.; Yang, C.; Gao, Y.; Golberg, D.; Bando, Y. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater. 2013, 35, 4925–4931.
  • Youssef, A.M.; El-Samahy, M.A.; Abdel Rehim, M.H. Preparation of conductive paper composites based on natural cellulosic fibers for packaging applications. Carbohydr. Polym. 2012, 89, 1027–1032.
  • Muller, D.; Rambo, C.R.; Porto, L.M.; Schreiner, W.H. Barra, G.M.O. Structure and properties of polypyrrole/bacterial cellulose nanocomposites. Carbohydr. Polym. 2013, 94, 655–662.
  • Merlini, C.; Ramôa, S.D.A.S.; Barra, G.M.O. Conducting polypyrrole-coated banana fiber composites: preparation and characterization. Polym. Compos. 2013, 34, 538–543.
  • Huang, H.; Wu, J.; Lin, X.; Li, L.; Shang, S.; Yuen, M.C.; Yan, G. Self-assembly of polypyrrole/chitosan composite hydrogels. Carbohydr. Polym. 2013, 95, 72–76.
  • Guo, B.; Finne-Wistrand, A.; Albertsson, A.C. Facile Synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules 2011, 12, 2601–2609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.