321
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Glass Transition Temperature in Microcellular Foaming Process with Supercritical Carbon Dioxide: A Review

, , , &

REFERENCES

  • Matini, J.; Waldman, F.; Suh, N. The production and analysis of microcellular thermoplastic foam. SPE ANTEC Tech. Pap. 1982, 28, 674–676.
  • Park, C.B.; Baldwin, D.F.; Suh, N.P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 1995, 35, 432–440.
  • Yokoyama, H.; Li, L.; Nemoto, T.; Sugiyama, K. Tunable nanocellular polymeric monoliths using fluorinated block copolymer templates and supercritical carbon dioxide. Adv. Mater. 2004, 17, 1542–1546.
  • Costeux, S.; Zhu, L. Low density thermoplastic nanofoams nucleated by nanoparticles. Polymer 2013, 54, 2785–2795.
  • Costeux, S.; Bunker, S.; Jeon, H. Homogeneous nanocellular foams from styrenic-acrylic polymer blends. J. Mater. Res. 2013, 28, 2351–2365.
  • Doroudiani, S.; Park, C.B.; Kortschot, M.T. Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polym. Eng. Sci. 1998, 38, 1205–1215.
  • Yetkin, S.H.; Unal, H.; Mimaroglu, A.; Findik, F. Influence of process parameters on the mechanical and foaming properties of PP polymer and PP/TALC/EPDM composites. Polym.-Plast. Technol. Eng. 2013, 52, 433–439.
  • Tomasko, D.L.; Li, H.; Liu, D.; Han, X.; Wingert, M.J.; Lee, L.J.; Koelling, K.W. A review of CO2 applications in the processing of polymers. Ind. Eng. Chem. Res. 2003, 42, 6431–6456.
  • Matuana, L.M. Solid state microcellular foamed poly(lactic acid): Morphology and property characterization. Bioresour. Technol. 2008, 99, 3643–3650.
  • Yang, Y.; Zhang, H.; Zheng, W. The microcellular foaming of polycarbonate/polystyrene blends. Polym.-Plast. Technol. Eng. 2010, 49, 1214–1222.
  • Mohyeddin, A.; Fereidoon, A. A semi-empirical model for density gradient in microcellular thermoplastic foams. J. Cell. Plast. 2011, 5, 413–428.
  • Darr, J.A.; Poliakoff, M. New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem. Rev. 1999, 99, 495–542.
  • Tomasko, D.L.; Burley, A.; Feng, L.; Yeh, S.; Miyazono, K.; Nirmal-Kumar, S.; Kusaka, I.; Koelling, K. Development of CO2 for polymer foam applications. J. Supercrit. Fluids 2009, 3, 493–499.
  • Liu, D.; Li, H.; Noon, M.S.; Tomasko, A.D.L. CO2-induced PMMA swelling and multiple thermodynamic property analysis using Sanchez−Lacombe EOS. Macromolecules 2005, 10, 4416–4424.
  • Taşdemir, M.; Caneba, G.T.; Tıwarı, R.; Wang, B. Characterization of PP/Mg(OH)2 and PP/nanoclay composites with supercritical CO2 (scCO2). Polym.-Plast. Technol. Eng. 2011, 50, 1064–1070.
  • Cooper, A.I. Polymer synthesis and processing using supercritical carbon dioxide. J. Mater. Chem. 2000, 10, 207–234.
  • Tuminello, H.W.; Dee, G.T.; McHugh, M.A. Dissolving perfluoropolymers in supercritical carbon dioxide. Macromolecules 1995, 28, 1506–1510.
  • Tang, M.; Huang, Y.; Chen, Y. Sorption and diffusion of supercritical carbon dioxide into polysulfone. J. Appl. Polym. Sci. 2004, 94, 474–482.
  • Hyatt, J.A. Liquid and supercritical carbon dioxide as organic solvents. J. Org. Chem. 1984, 49, 5097–5101.
  • Dobrowolski, J.C.; Jamróz, M.H. Infrared evidence for CO2 electron donor—acceptor complexes. J. Mol. Struct. 1992, 275, 211–219.
  • Kasturirangan, A.; Koh, C.A.; Teja, A.S. Glass-transition temperatures in CO2 + polymer systems: Modeling and experiment. Ind. Eng. Chem. Res. 2011, 50, 158–162.
  • Condo, P.D.; Sanchez, I.C.; Panayiotou, C.G.; Johnston, K.P. Glass transition behavior including retrograde vitrification of polymers with compressed fluid diluents. Macromolecules 1992, 25, 6119–6127.
  • Yu, L.; Liu, H.; Dean, K. Thermal behavior of poly(lactic acid) in contact with compressed carbon dioxide. Polym. Int. 2009, 58, 368–372.
  • Nofar, M.; Park, C.B. Poly (lactic acid) foaming. Prog. Polym. Sci. 2014, in press.
  • Shieh, Y.; Su, J.; Manivannan, G.; Lee, P.H.C.; Sawan, S.P.; Spall, W.D. Interaction of supercritical carbon dioxide with polymers. I. Crystalline polymers. J. Appl. Polym. Sci. 1996, 59, 695–705.
  • Ma, Z.; Zhang, G.; Yang, Q.; Shi, X.; Shi, A. Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J. Cell. Plast. 2014, 1, 55–79.
  • Wissinger, R.G.; Paulaitis, M.E. Molecular thermodynamic model for sorption and swelling in glassy polymer-carbon dioxide systems at elevated pressures. Ind. Eng. Chem. Res. 1991, 30, 842–851.
  • Chiou, J.S.; Barlow, J.W.; Paul, D.R. Plasticization of glassy polymers by CO2. J. Appl. Polym. Sci. 1985, 30, 2633–2642.
  • Zhang, Y.; Gangwani, K.K.; Lemert, R.M. Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide. J. Supercrit. Fluids 1997, 11, 115–134.
  • Young AT, , Polymer-solvent phase separation as a route to low density, microcellular plastic foams. J. Cell. Plast. 1987, 23, 55–72.
  • Goel, S.K.; Beckman, E.J. Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation. Polym. Eng. Sci. 1994, 34, 1137–1147.
  • Seeler, K.A.; Kumar, V. Decoupling the effects of the matrix properties and foam structure on the mechanical properties of microcellular foam by sub-Tg annealing. J. Reinf. Plast. Compos. 1995, 14, 1054–1068.
  • Shafi, M.A.; Joshi, K.; Flumerfelt, R.W. Bubble size distributions in freely expanded polymer foams. Chem. Eng. Sci. 1997, 52, 635–644.
  • Shafi, M.A.; Flumerfelt, R.W. Initial bubble growth in polymer foam processes. Chem. Eng. Sci. 1997, 52, 627–633.
  • Shafi, M.A.; Lee, J.G.; Flumerfelt, R.W. Prediction of cellular structure in free expansion polymer foam processing. Polym. Eng. Sci. 1996, 36, 1950–1959.
  • Taki, K. Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process. Chem. Eng. Sci. 2008, 63, 3643–3653.
  • Briscoe, B.J.; Kelly, C.T. The plasticization of a polyurethane by carbon dioxide at high pneumatic stresses. Polymer 1995, 36, 3099–3102.
  • Reglero, J.A.; Viot, P.; Dumon, M. Foaming of amorphous polymers and blends in supercritical CO2: Solubility versus block copolymers addition. J. Cell. Plast. 2011, 6, 535–548.
  • Ding, J.; Ma, W.; Zhong, Q, , Orthogonal design study on factors affecting foaming behaviors of polypropylene and polypropylene/nano-calcium carbonate nanocomposites. Polym.-Plast. Technol. Eng. 2013, 52, 7–15.
  • Montazeri, A.; Pourshamsian, K.; Riazian, M. Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis. Mater. Des. 2012, 36, 408–414.
  • Ding, J.; Ma, W.; Zhong, Q, , Foaming of homogeneous polypropylene and ethylene-polypropylene block copolymer using supercritical carbon dioxide. Polym.-Plast. Technol. Eng. 2013, 52, 592–598.
  • Zhang, P.; Zhou, N.; Li, B. Effects of process variables on microcellular structure and crystallization of polypropylene foams with supercritical CO2 as the foaming agent—A study of microcellular foaming of polypropylene. Polym.-Plast. Technol. Eng. 2007, 46, 885–891.
  • Arora, K.A.; Lesser, A.J.; McCarthy, T.J. Synthesis, characterization, and expansion of poly(tetrafluoroethylene-co-hexafluoropropylene)/polystyrene blends processed in supercritical carbon dioxide. Macromolecules 1999, 32, 2562–2568.
  • Krause, B.; Mettinkhof, R.; van der Vegt, N.F.A.; Wessling, M. Microcellular foaming of amorphous high-Tg polymers using carbon dioxide. Macromolecules 2001, 34, 874–884.
  • Weller, J.E.; Kumar, V. Solid-state microcellular polycarbonate foams. I. The steady-state process space using subcritical carbon dioxide. Polym. Eng. Sci. 2010, 50, 2160–2169.
  • Holl, M.R. Dynamic analysis, measurement, and control of cell growth in solid state polymeric foams, PhD Thesis, Seattle, University of Washington, 1995.
  • Li, X.; Lu, H.; Cao, G.; Qian, Y.; Chen, L.; Zhang, R.; Liu, H.; Shi, Y. Experimental study of the synergistic plasticizing effect of carbon dioxide and ibuprofen on the glass transition temperature of poly(methyl methacrylate). Ind. Eng. Chem. Res. 2014, 53, 5873–5885.
  • Chow, T.S. Molecular interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules 1980, 13, 362–364.
  • Dimarzio, E.A.; Gibbs, J.H. Molecular interpretation of glass temperature depression by plasticizers. J. Polym. Sci. Pt. A: Gen. Pap. 1963, 1, 1417–1428.
  • Gibbs, J.H.; DiMarzio, E.A. Nature of the glass transition and the glassy state. J. Chem. Phys. 1958, 28, 373–383.
  • Boyer, S.A.E.; Grolier, J.P.E. Modification of the glass transitions of polymers by high-pressure gas solubility. J. Polym. Sci. Pt. B: Polym. Phys. 2005, 77, 593–603.
  • Gendron, R.; Daigneault, L.E.; Caron, L.M. Rheological behavior of mixtures of polystyrene with HCFC 142b and HFC 134a. J. Cell. Plast. 1999, 35, 221–246.
  • Holl, M.R.; Garbini, J.L.; Murray, W.R.; Kumar, V. A steady-state mass balance model of the polycarbonate–CO2 system reveals a self-regulating cell growth mechanism in the solid-state microcellular process. J. Polym. Sci. Pt. B: Polym. Phys. 2001, 39, 868–880.
  • Ito, Y.; Yamashita, M.; Okamoto, M. Foam processing and cellular structure of polycarbonate-based nanocomposites. Macromol. Mater. Eng. 2006, 291, 773–783.
  • Lin, H.; Freemana, B.D.; Kalakkunnath, S.; Kalika, D.S. Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure- and mixed-gas permeability in poly(ethylene glycol)-based materials: Free volume interpretation. J. Membr. Sci. 2007, 291, 131–139.
  • Yoon, J.D.; Cha, S.W. Change of glass transition temperature of polymers containing gas. Polym. Test. 2001, 20, 287–293.
  • Hwang, Y.D.; Cha, S.W. The relationship between gas absorption and the glass transition temperature in a batch microcellular foaming process. Polym. Test. 2002, 21, 269–275.
  • Ruiza, J.A.R.; Viot, P.; Dumon, M. Foaming behavior and compressive properties of microcellular nanostructured polystyrene. Cell. Polym. 2009, 28, 363–385.
  • Ruiza, J.A.R.; Marc-Tallonb, J.; Pedrosb, M.; Dumona, M. Two-step micro cellular foaming of amorphous polymers in supercritical CO2. J. Supercrit. Fluids 2011, 57, 87–94.
  • Tang, Q.; Yang, B.; Zhao, Y.; Zhao, L. Sorption and diffusion of sub/supercritical carbon dioxide in poly(methyl methacrylate). J. Macromol. Sci., Pt. B: Phys. 2007, 2, 275–284.
  • Lacombe, R.H.; Sanchez, I.C. Statistical thermodynamics of fluid mixtures. J. Phys. Chem. 1976, 80, 2563–2580.
  • Sanchez, I.C.; Lacombe, R.H. Statistical thermodynamics of polymer solutions. Macromolecules 1978, 11, 1145–1156.
  • Panayiotou, C.G. Lattice-fluid theory of polymer solutions. Macromolecules 1987, 20, 861–871.
  • Kikic, I.; Vecchione, F.; Alessi, P.; Cortesi, A.; Eva, F. Polymer plasticization using supercritical carbon dioxide:experiment and modeling. Ind. Eng. Chem. Res. 2003, 42, 3022–3029.
  • Sanchez, I.C.; Lacombe, R.H. An elementary molecular theory of classical fluids. Pure fluids. J. Phys. Chem. 1976, 80, 2352–2362.
  • Aionicesei, E.; Škerget, M.; Knez, Ž, , Mathematical modelling of the solubility of supercritical CO2 in poly(l-lactide) and poly(d,l-lactide-co-glycolide). J. Supercrit. Fluids 2009; 50, 320–326.
  • Royer, R.J.Supercritical fluid Assisted Polymer Processing: Plasticization, Swelling and Rheology, PhD Thesis, North Carolina State University Department of Chemical Engineering, 2000.
  • Cao, G,; Liu, T.; Roberts, G.W. Predicting the effect of dissolved carbon dioxide on the glass transition temperature of poly(acrylic acid). J. Appl. Polym. Sci. 2010, 115, 2136–2143.
  • Nadakatti, S.M.; Kim, J.H.; Stern, S.A. Solubility of light gases in poly(n-butyl methacrylate) at elevated pressures. J. Membr. Sci. 1995, 108, 279–291.
  • Wingert, M.J.; Shukla, S.; Koelling, K.W.; Tomasko, D.L.; Lee, L.J. Shear viscosity of CO2-plasticized polystyrene under high static pressures. Ind. Eng. Chem. Res. 2009, 48, 5460–5471.
  • Kishimoto, Y.; Ishii, R. Differential scanning calorimetry of polysulfone at high pressures of CO2 and N2O. Polym. Bull. 1999, 43, 255–260.
  • Ruiz, J.A.R.; Pedrosc, M.; Tallonc, J.; Dumona, M. Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers—One step foaming process. J. Supercrit. Fluids 2011, 58, 168–176.
  • Mascia, L.; Re, G.D.; Ponti, P.P.; Bologna, S.; Di Giacomo, G.; Haworth, B. Crystallization effects on autoclave foaming of polycarbonate using supercritical carbon dioxide. Adv. Polym. Technol. 2006, 25, 225–235.
  • Ma, Z.; Zhang, G.; Yang, Q.; Shi, X.; Shi, A. Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J. Cell. Plast. 2014, 50, 55–79.
  • Martin, T.M.; Young, D.M. Correlation of the glass transition temperature of plasticized PVC using a lattice fluid model. Polymer 2003, 44, 4747–4754.
  • Condo, P.D.; Paul, D.R.; Johnston, K.P. Glass transitions of polymers with compressed fluid diluents: type II and III behavior. Macromolecules 1994, 27, 365–371.
  • Handa, Y.P.; Zhang, Z. A new technique for measuring retrograde vitrification in polymer–gas systems and for making ultramicrocellular foams from the retrograde phase. J. Polym. Sci. Pt. B: Polym. Phys. 2000, 38, 716–725.
  • Tsivintzelis, I.; Panayiotou, C. Designing issues in polymer foaming with supercritical fluids. Macromol. Symp. 2013, 331–332, 109–114.
  • Condo, P.D.; Johnston, K.P. In situ measurement of the glass transition temperature of polymers with compressed fluid diluents. J. Polym. Sci. Pt. B Polym. Phys. 1994, 32, 523–533.
  • Alessi, P.; Cortesi, A.; Kikic, I.; Vecchione, F. Plasticization of polymers with supercritical carbon dioxide: Experimental determination of glass-transition temperatures. J. Appl. Polym. Sci. 2003, 88, 2189–2193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.