342
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of Poly (methacrylic acid)–Graphene Oxide Nanocomposite as a pH-Sensitive Drug Carrier Through in-situ Copolymerization of Methacrylic Acid with Polymerizable Graphene

, , &

REFERENCES

  • Jang, J.Y.; Kim, M.S.; Jeong, H.M.; Shin, C.M. Graphite oxide/poly (methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos. Sci. Technol. 2009, 69, 186–191.
  • Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Rel. 2014, 173, 75–88.
  • Gao, J.; Shen, K.; Bao, F.; Yin, J.; Wang, D.; Ma, R.; Yan, C.; Chen, T.; Wang, G.; Liu, X. Preparation and characterization of a graphene oxide film modified by the covalent attachment of polysiloxane. Polym.-Plast. Technol. Eng. 2013, 52, 553–557.
  • Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1, 403–408.
  • Liu, J.; Tang, J.; Gooding, J.J. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem. 2012, 22, 12435–12452.
  • Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y.S. Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 2010, 35, 52–71.
  • William, S.; Hummers, J.; Offeman, R. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.
  • Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 2006, 18, 2740–2749.
  • Song, M.; Shi, G.; Grossiord, N.; Hu, Y.; Etmimi, H.; Davis, T.P.; Torkelson, J.M.; Li, Z.-M.; Zarbin, A.J.G.; Kang, E.-T. Polymer-graphene nanocomposites. Royal Society of Chemistry: Cambridge, UK, 2012.
  • Wang, J.; Han, Z. The combustion behavior of polyacrylate ester/graphite oxide composites. Polym. Advan. Technol. 2006, 17, 335–340.
  • Hua, L.; Kai, W.; Inoue, Y. Synthesis and characterization of poly (ε-caprolactone)–graphite oxide composites. J. Appl. Polym. Sci. 2007, 106, 1880–1884.
  • Uhl, F.M.; Wilkie, C.A. Preparation of nanocomposites from styrene and modified graphite oxides. Polym. Degrad. Stabil. 2004, 84, 215–226.
  • Wang, R.; Wang, X.; Chen, S.; Jiang, G. In situ polymerization approach to poly (ε-caprolactone)-graphene oxide composites. Design. Mon. Polym. 2012, 15, 303–310.
  • Mahkam, M.; Abbaszad Rafi, A.; Mohammadzadeh Gheshlaghi, L. Preparation of novel pH-sensitive nanocomposites based on ionic-liquid modified montmorillonite for colon specific drug delivery system. Polym. Compos. 2014, doi: 10.1002/pc.23169.
  • Matsuo, Y.; Tahara, K.; Sugie, Y. Structure and thermal properties of poly (ethylene oxide)-intercalated graphite oxide. Carbon 1997, 35, 113–120.
  • Wu, J.; Chung, D. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 2002, 40, 445–447.
  • Kovtyukhova, N.I.; Ollivier, P.J.; Martin, B.R.; Mallouk, T.E.; Chizhik, S.A.; Buzaneva, E.V.; Gorchinskiy, A.D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778.
  • Kyotani, T.; Moriyama, H.; Tomita, A. High temperature treatment of polyfurfuryl alcohol/graphite oxide intercalation compound. Carbon 1997, 35, 1185–1187.
  • Szabó, T.; Szeri, A.; Dékány, I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005, 43, 87–94.
  • Ramanathan, T.; Abdala, A.; Stankovich, S.; Dikin, D.; Herrera-Alonso, M.; Piner, R.; Adamson, D.; Schniepp, H.; Chen, X.; Ruoff, R. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.
  • Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25.
  • Wu, J.; Tang, Q.; Sun, H.; Lin, J.; Ao, H.; Huang, M.; Huang, Y. Conducting film from graphite oxide nanoplatelets and poly (acrylic acid) by layer-by-layer self-assembly. Langmuir 2008, 24, 4800–4805.
  • Kong, B.-S.; Yoo, H.-W.; Jung, H.-T. Electrical conductivity of graphene films with a poly (allylamine hydrochloride) supporting layer. Langmuir 2009, 25, 11008–11013.
  • Son, D.I.; Kim, T.W.; Shim, J.H.; Jung, J.H.; Lee, D.U.; Lee, J.M.; Park, W.I.; Choi, W.K. Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer. Nano Lett. 2010, 10, 2441–2447.
  • Ashori, A.; Bahrami, R. Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym.-Plast. Technol. Eng. 2014, 53, 312–318.
  • Cassagneau, T.; Fendler, J.H. High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Advan. Mater. 1998, 10, 877–881.
  • Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469–4476.
  • Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Advan. Drug Deliv. Rev. 2006, 58, 1655–1670.
  • Galaev, I. Y.; Mattiasson, B. ‘Smart’polymers and what they could do in biotechnology and medicine. Trends in biotechnology 1999, 17, 335–340.
  • Bianco, A. Graphene: safe or toxic? The two faces of the medal. Angewandte Chem. Inter. Ed. 2013, 52, 4986–4997.
  • Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013, 9, 9243–9257.
  • Das, T.K.; Prusty, S. Graphene-based polymer composites and their applications. Polym.-Plast. Technol. Eng. 2013, 52, 319–331.
  • Kuckling, D.; Ivanova, I.G.; Adler, H.-J.P.; Wolff, T. Photochemical switching of hydrogel film properties. Polymer 2002, 43, 1813–1820.
  • Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Mechanical, thermal and swelling properties of poly (acrylic acid)–graphene oxide composite hydrogels. Soft Matter 2012, 8, 1831–1836.
  • Serizawa, T.; Wakita, K.; Akashi, M. Rapid deswelling of porous poly (N-isopropylacrylamide) hydrogels prepared by incorporation of silica particles. Macromolecules 2002, 35, 10–12.
  • Tang, H.; Guo, J.; Sun, Y.; Chang, B.; Ren, Q.; Yang, W. Facile synthesis of pH sensitive polymer-coated mesoporous silica nanoparticles and their application in drug delivery. Inter. J. Pharm. 2011, 421, 388–396.
  • Banet, P.; Griesmar, P.; Serfaty, S.; Vidal, F.; Jaouen, V.; Le Huerou, J.-Y. One-shot synthesis of a poly (N-isopropylacrylamide)/silica hybrid gel. J. Phys. Chem. B 2009, 113, 14914–14919.
  • Imran, A.B.; Seki, T.; Ito, K.; Takeoka, Y. Poly (N-isopropylacrylamide) gel prepared using a hydrophilic polyrotaxane-based movable cross-linker. Macromolecules 2010, 43, 1975–1980.
  • Haraguchi, K.; Takehisa, T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Advan. Mater. 2002, 14, 1120.
  • Alzari, V.; Nuvoli, D.; Scognamillo, S.; Piccinini, M.; Gioffredi, E.; Malucelli, G.; Marceddu, S.; Sechi, M.; Sanna, V.; Mariani, A. Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J. Mater. Chem. 2011, 21, 8727–8733.
  • Wang, B.; Yang, D.; Zhang, J.Z.; Xi, C.; Hu, J. Stimuli-responsive polymer covalent functionalization of graphene oxide by Ce (IV)-induced redox polymerization. J. Phys. Chem. C 2011, 115, 24636–24641.
  • Mohamadi, S.; Sharifi-Sanjani, N.; Mahdavi, H. Functionalization of Graphene Sheets via Chemically Grafting of PMMA Chains Through in-situ Polymerization. Journal of Macromolecular Science, Part A 2011, 48, 577–582.
  • Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Advan. Mater. 2009, 21, 1275–1279.
  • Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Amer. Chem. Soc. 2008, 130, 10876–10877.
  • Liu, J.; Tao, L.; Yang, W.; Li, D.; Boyer, C.; Wuhrer, R.; Braet, F.; Davis, T.P. Synthesis, characterization, and multilayer assembly of pH sensitive graphene–polymer nanocomposites. Langmuir 2010, 26, 10068–10075.
  • Wei, T.; Luo, G.; Fan, Z.; Zheng, C.; Yan, J.; Yao, C.; Li, W.; Zhang, C. Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon 2009, 47, 2296–2299.
  • Rani, A.; Oh, K.A.; Koo, H.; Lee, H.j.; Park, M. Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly. Appl. Surf. Sci. 2011, 257, 4982–4989.
  • Wang, S.; Yu, D.; Dai, L.; Chang, D.W.; Baek, J.-B. Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano 2011, 5, 6202–6209.
  • Li, Z.; Wang, J.; Liu, X.; Liu, S.; Ou, J.; Yang, S. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors. J. Mater. Chem. 2011, 21, 3397–3403.
  • Chen, H.-J.; Zhang, Z.-H.; Xie, D.; Cai, R.; Chen, X.; Liu, Y.-N.; Yao, S.-Z. Surface-imprinting sensor based on carbon nanotubes/graphene composite for determination of bovine serum albumin. Electroanalysis 2012, 24, 2109–2116.
  • Tai, Z.; Ma, H.; Liu, B.; Yan, X.; Xue, Q. Facile synthesis of Ag/GNS-g-PAA nanohybrids for antimicrobial applications. Coll. Surf. B: Biointerf. 2012, 89, 147–151.
  • Wang, T.; Zhang, Z.; Gao, J.; Yin, J.; Sun, R.; Bao, F.; Ma, R. Synthesis of graphene oxide modified poly (sebacic anhydride) hybrid materials for controlled release applications. Inter. J. Polym. Mater. Polym. Biomater. 2014, 63, 726–732.
  • Maheshkumar, K.V.; Krishnamurthy, K.; Sathishkumar, P.; Sahoo, S.; Uddin, E.; Pal, S. K.; Rajasekar, R. Research updates on graphene oxide-based polymeric nanocomposites. Polym. Compos. 2014, 35, 2297–2310.
  • Kuila, T.; Bose, S.; Khanra, P.; Kim, N.H.; Rhee, K.Y.; Lee, J.H. Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos. Pt. A: Appl. Sci. Mfg. 2011, 42, 1856–1861.
  • Zhang, K.; Zhang, Y.; Wang, S. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 2013, 3.
  • Jeong, H.-K.; Lee, Y.P.; Lahaye, R.J.; Park, M.-H.; An, K.H.; Kim, I.J.; Yang, C.-W.; Park, C.Y.; Ruoff, R.S.; Lee, Y.H. Evidence of graphitic AB stacking order of graphite oxides. J. Amer. Chem. Soc. 2008, 130, 1362–1366.
  • Jeong, H.M.; Choi, M.Y.; Kim, M.S.; An, J.H.; Jung, J.S.; Kim, J.H.; Kim, B.K.; Cho, S.M. Styrenic polymer/organoclay nanocomposite prepared viain-situ polymerization with an azoinitiator linked to an epoxy oligomer. Macromol. Res. 2006, 14, 610–616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.