245
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Grafting of Citric Acid as a Green Coupling Agent on the Surface of CuO Nanoparticle and its Application for Synthesis and Characterization of Novel Nanocomposites Based on Poly(amide-imide) Containing N-trimellitylimido-L-valine Linkage

, &

REFERENCES

  • Das, D.K.; Prusty, S. Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 2012, 51, 1487–1500.
  • Jeon, I.Y.; Baek, J.B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials. 2010, 3, 365–3674.
  • Gouda, M.; Hebeish, A. Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric. Industrial Textiles. 2013, 39, 203–214.
  • Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic Nanocomposites. Prog. Polym. Sci. 2013, 38, 1232–1261.
  • Youssef, A.M. Polymer nanocomposites as a new trend for packaging applications. Polym. Plast. Technol. Eng. 2013, 52, 635–660.
  • Mallakpour, S.; Aalizadeh, R. Polymer nanocomposites containing 4,4′-Methylene bis(3-chloro-2,6-diethylaniline) and N,N′-(Pyromellitoyl)-bis-L-phenylalanine diacid reinforced with modified ZnO and organo-montmorillonite. Polym. Plast. Technol. Eng. 2013, 52, 674–682.
  • Kumar, S.K.; Jouault, N. Nanocomposites with polymer grafted nanoparticles. Macromolecules. 2013, 46, 3199–3214.
  • Rawtani, D.; Agrawal, Y.K. Multifarious applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci. 2012, 30, 282–295.
  • Iijima, M.; Kamiya, H. Surface modification for improving the stability of nanoparticles in liquid media. KONA Powder. Part. J. 2009, 119–129.
  • Kamiya, H.; Motoyuki, I.; Shun, T.; Chihiro, I.; Makio, N. Characterication and control of nanoparticle dispersion behavior for smart processing in liquid phase. Transaction of JWRI. 2010, 39, 366–368.
  • Inui, C.; Kura, H.; Sato, T.; Tsuge, Y.; Shiratori, S.; Ohkita, H.; Tagaya, A.; Koike, Y. Preparation of nanocomposite for optical application using ZnTe nanoparticles and a zero-birefringence polymer. J. Mater. Sci. 2007, 42, 8144–8149.
  • Wang, Z.G.; ZU, X.T.; Xiang, X. Preparation and characterization of polymer/inorganic nanoparticle composites through electron irradiation. J. Mater. Sci. 2006, 41, 1973–1978.
  • Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2011, 60, 208–337.
  • Jegatha Christy, A.; Nehru, L.C.; Umadevi, M. A novel combustion method to prepare CuO nanorods and its antimicrobial and photocatalytic activities. Powder Technol. 2013, 235, 783–786.
  • Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Ag. 2009, 33, 587–590.
  • El-Trass, A.; ElShamy, H.; El-Mehasseb, I.; El-Kemary, M. Applied surface science, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 2012, 258, 2997–3001.
  • Gandhi, S.; Subramani, R.H.H.; Ramakrishnan, T.; Sivabalan, A.; Dhanalakshmi, V.; Gopinathan Nair, M.R., Anbarasan, R. Ultrasound assisted one pot synthesis of nano-sized CuO and its nanocomposite with poly(vinyl alcohol). J. Mater. Sci. 2010, 45, 1688–1694.
  • Jeng, J.Y.; Liu, J.C.; Jean, J.H. Dispersion of oleate-modified CuO nanoparticles in a nonpolar solvent. J. Am. Ceram. Soc. 2007, 90, 3676–3679.
  • Jayaprakash, J.; Srinivasan, N.; Chandrasekaran, P. Surface modifications of CuO nanoparticles using Ethylene diamine tetra acetic acid as a capping agent by sol–gel routine. Spectrochim. Acta Mol. Biomol. Spectros. 2014, 123, 363–368.
  • Guo, Z.; Liang, X.; Pereira, T.; Scaffaro, R.; Thomas Hahn, H. CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis, Compos. Sci. Technol. 2007, 67, 2036–2044.
  • Mallakpour, S.; Kowsari, E. Preparation and characterization of new optically active poly(amide-imide)s derived from N,N-(4,4-Oxydiphthaloyl)-bis-(s)-(+)-valine diacid chloride and aromatic diamines. Polym. Eng. Sci. 2006, 46, 559–564.
  • Hsiao, S.H.; Liou, G.S.; Kung, Y.C.; Lee, Y.J. Synthesis and characterization of electrochromic poly(amide–imide)sbased on the diimide-diacid from 4,4 0-diamino-4 00-methoxytriphenylamine and trimellitic anhydride. Eur. Polym. J. 2010, 46, 1355–1366.
  • Mallakpour, S.; Dinari, M. Progress in synthetic polymers based on natural amino acids. J. Macromol. Sci. Pt. A: Pure Appl. Chem. 2011, 48, 644–679.
  • Mohsin, M.A.; Akhter, Z.; Bolte, M.S.; Butt, M.S.; Saif Ullah Khan, M.; Siddiqi, H.M. Synthesis and characterization of some novel thermally stable poly(amide–imide)s. J. Mater. Sci. 2009, 44, 4796–4805.
  • Sava, I. Synthesis and characterization of some poly(amide-imide)s by direct polycondensation. Rev. Roum. Chim. 2008, 53, 795–801.
  • Mallakpour, S.; Dinari, M. Novel nanocomposites based on reactive organoclay of L-tyrosine and amine end-capped poly(amide–imide): synthesis and characterization. Appl. Clay. Sci. 2013, 75–76, 67–73.
  • Mallakpour, S.; Madani, M.; Roshandel, S. Applications of ultrasound for modification of zinc oxide and fabrication of optically active poly(amide-imide)/zinc oxide bionanocomposites. Des. Mono. Polym. 2014, 17, 364–371.
  • Mallakpour, S.; Zeraatpisheh, F. Novel chiral and organosoluble nanostructurepoly(ester–imide)s containing N,N′-(3,3′,4,4′-benzophenonetetracarboxylic)-3,3′,4,4′-diimido-bis-(L-tyrosine methyl ester) as a new aminoacid based diol: production, morphology, and thermalproperties. Des. Mono. Polym. 2013, 16, 488–497.
  • Palou, R. Ionic liquid and microwave-assisted organic synthesis: a “green” and synergic couple. J. Mex. Chem. Soc. 2007, 51, 252–264.
  • Mallakpour, S.; Zeraatpisheh, F. Novel heat resistant nanostructure poly(amide–imide)s containing new TMA-based diacid via conventional polycondensation reaction in an ionic green medium: synthesis, morphology, andthermal properties. Des. Mono. Polym. 2013, 16, 313–322.
  • Bishop, L.M.; Yeager, J.C.; Chen, X.; Wheeler, J.N.; Torelli, M.D.; Benson, M.C.; Burke, S.D.; Pedersen, J.A.; Hamers, R.J. A citric acid-derived ligand for modular functionalization of metal oxide surfaces via “click” chemistry. Langmuir 2012, 28, 1322–1329.
  • Oliveira, M.L.; Malagoni, R.A.; Franco Jr, M.R.F. Solubility of citric acid in water, ethanol, n-propanol and in mixtures of ethanol +water. Fluid Phase Equilib. 2013, 352, 110–113.
  • Li, L.; Mak, K.Y.; Leung, C.W.; Chan, K.Y.; Chan, W.K.; Zhong, W.; Pong, P.W.T. Effect of synthesis conditions on the properties of citric-acid coated iron oxide nanoparticles. Microelectron. Eng. 2013, 110, 329–334.
  • Wyrzykowski, D.; Hebanowska, E.; Nowak-Wiczk, G.; Makowski, M.; Chmurzyński, L. Thermal behaviour of citric acid and isomeric aconitic acids. J. Therm. Anal. Calorim. 2011, 104, 731–735.
  • Mallakpour, S.; Banihassan, K.; Sabzalian, M.R. Novel bioactive chiral poly(amide–imide)s containing different amino acids linkages: Studies on synthesis, characterization and biodegradability. J. Polym. Environ. 2013, 21, 568–574.
  • Reyes, J.T.; Nestor, A.R.V.; Majumdar, S.; Videa, J.R.P.; Torresdey, J.G. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J. Hazard. Mater. 2013, 263, 677–684.
  • Garrido, L.; Faglietti, E. Mullite-zirconia composites: Effect of citric acid addition on slip and cast properties. J. Mater. Sci. 2005, 40, 5161–5166.
  • Cheraghipour, E.; Javadpour, S.; Mehdizadeh, A.R. Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomedical Science and Engineering. 2012, 5, 715–719.
  • Nigam, S.; Barick, K.C.; Bahadur, D. Development ofcitrate-stabilizedFe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. J. Magn. Mater. 2011, 323, 237–243.
  • Giri, A.; Makhal, A.; Ghosh, B.; Raychaudhuri, A.K.; Pal, S.K. Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands picosecond time-resolved FRET studies. Nanoscale 2010, 2, 2704–2709.
  • Nad, M. Ultrasonic horn design for ultrasonic machining technologies. Appl. Comput. Mech. 2010, 4, 79–88.
  • Lin, G.W.; Kui, W.X. Formation of the rutile TiO2 under ultrasonic irradiation. J Mater Sci. 2004, 39, 3256–3266.
  • Leonelli, C.; Mason T.J. Microwave and ultrasonic processing: Now a realistic option for industry. Chem. Eng. Proc. 2010, 49, 885–900.
  • Cheng, J.; Fan, D.B.; Wang, H.; Liu, B.W. Zhang, Y.C.; Yan, H. Chemical bath deposition of crystalline ZnS thin films, Semicond. Sci. Technol. 2003, 18, 676–679.
  • Sahooli, M.; Sabbaghi, S.; Saboori, R. Synthesis and characterization of mono sized CuO nanoparticles, Mater. Lett. 2012, 81, 169–172.
  • Van Krevelen, D.W. Some basic aspects of flame resistance of polymeric materials. Polymer. 1975, 16, 615–620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.