2,734
Views
105
CrossRef citations to date
0
Altmetric
Reviews

Polylactic Acid in Medicine

&

REFERENCES

  • Chen, G.; Ushida, T.; Tateishi, T. Scaffold design for tissue engineering. Macromol. Biosci. 2002, 2, 67–77.
  • Bendix, D. Chemical synthesis of polylactide and its copolymers for medical applications. Polym. Degrad. Stabil. 1998, 59, 129–135.
  • Dearnaley, G.; Asher, J.; Peacock, A.T.; Allen, S.J.; Watkins, R.E.J. The use of thin layer activation to evaluate ion beam surface treatments of orthopaedic implant materials. Surf. Coat. Technol. 2007, 201, 8070–8075.
  • Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864.
  • Garlotta, D. A literature review of poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Progr. Polym. Sci. 2007, 32, 455–482.
  • Holten, C.H.; Müller, A.; Rehbinder, D. Lactic acid. Properties and chemistry of lactic acid and derivatives. 1971, xxviii +566 pp.
  • Carothers, W.H.; Dorough, G.L.; van Natta, F.J. Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. J. Am. Chem. Soc. 1932, 54, 761–772.
  • Kulkarni, R.K.; Pani, K.C.; Neuman, C.; Leonard, F. Polylactic acid for surgical implants. Arch. Surg. 1966, 93, 839–843.
  • Watson, P.D. Lactic acid polymers as constituents of synthetic resins and coatings. Ind. Eng. Chem. 1948, 40, 1393–1397.
  • Avery, C.E. Manufacture of Lactates. U.S Patent No. US243827 A, 1881.
  • Spinu, M.; Jackson, C.; Keating, M.Y.; Gardner, K.H. Material design in poly(lactic acid) systems: Block copolymers, star homo- and copolymers, and stereocomplexes. J, Macromol. Sci. Pt. A 1996, 33, 1497–1530.
  • Vainionpaa, S.; Rokkanen, P.; Tormala, P. Surgical applications of biodegradable polymers in human tissues. Progr. Polym. Sci. 1989, 14, 679–716.
  • Amass, W.; Amass, A.; Tighe, B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Inter. 1998, 47, 89–144.
  • Zhang, X.; Wyss, U.P.; Pichora, D.; Goosen, M.F.A. An investigation of poly(lactic acid) degradation. J. Bioact. Compat. Polym. 1994, 9, 80–100.
  • Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276–277, 1–24.
  • Varadarajan, S.; Miller, D.J. Catalytic upgrading of fermentation-derived organic acids. Biotechnol. Progr. 1999, 15, 845–854.
  • John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol. Advan. 2009, 27, 145–152.
  • Adsul, M.G.; Varma, A.J.; Gokhale, D.V. Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem. 2007, 9, 58–62.
  • Lipinsky, E.S. Chemicals from biomass: Petrochemical substitution options. Science 1981, 212, 1465–1471.
  • Heriban, V.; Škára, J.; Šturdík, E.; Ilavský, J. Isolation of free lactic acid using electrodialysis. Biotechnol. Tech. 1993, 7, 63–68.
  • Hang, Y.D.; Hamamci, H.; Woodams, E.E. Production of L(+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol. Lett. 1989, 11, 119–120.
  • Witte, V.; Krohn, U.; Emeis, C.C. Characterization of yeasts with high L[+]-lactic acid production: Lactic acid specific soft-agar overlay (LASSO) and TAFE-patterns. J. Basic Microbiol. 1989, 29, 707–716.
  • Inskeep, G.C.; Taylor, G.G.; Breitzke, W.C. Lactic acid from corn sugar. Ind. Eng. Chem. 1952, 44, 1955–1966.
  • Weiser, R.B.; Geankoplis, C.J. Lactic acid purification by extraction. Ind. Eng. Chem. 1955, 47, 858–863.
  • Filachione, E.M.; Fisher, C.H. Purification of lactic acid. Ind. Eng. Chem. 1946, 38, 228–232.
  • Griffith, L.G. Polymeric biomaterials. Acta Mater. 2000, 48, 263–277.
  • Lim, L.-T.; Auras, R.; Rubino, M. Processing technologies for poly(lactic acid). Progr. Polym. Sci. 2008, 33, 820–852.
  • De Santis, P.; Kovacs, A.J. Molecular conformation of poly(S-lactic acid). Biopolymers 1968, 6, 299–306.
  • Lampe, K.J.; Namba, R.M.; Silverman, T.R.; Bjugstad, K.B.; Mahoney, M.J. Impact of lactic acid on cell proliferation and free radical-induced cell death in monolayer cultures of neural precursor cells. Biotechnol. Bioeng. 2009, 103, 1214–1223.
  • Fukushima, K.; Kimura, Y. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym. Inter. 2006, 55, 626–642.
  • Tracy, M.A.; Ward, K.L.; Firouzabadian, L.; Wang, Y.; Dong, N.; Qian, R.; Zhang, Y. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 1999, 20, 1057–1062.
  • Liu, L.; Li, S.; Garreau, H.; Vert, M. Selective Enzymatic Degradations of Poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 2000, 1, 350–359.
  • Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid) modifications. Progr. Polym. Sci. 2010, 35, 338–356.
  • Ovitt, T.M.; Coates, G.W. Stereochemistry of lactide polymerization with chiral catalysts: New opportunities for stereocontrol using polymer exchange mechanisms. J. Amer. Chem. Soc. 2002, 124, 1316–1326.
  • Bouapao, L.; Tsuji, H.; Tashiro, K.; Zhang, J.; Hanesaka, M. Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s. Polymer 2009, 50, 4007–4017.
  • Lasprilla, A.J.R.; Martinez, G.A.R.; Lunelli, B.H.; Jardini, A.L.; Filho, R.M. Poly-lactic acid synthesis for application in biomedical devices — A review. Biotechnol. Advan. 2012, 30, 321–328.
  • Ajioka, M.; Enomoto, K.; Suzuki, K.; Yamaguchi, A. The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid. J. Environ. Polym. Degr. 1995, 3, 225–234.
  • Auras, R.A.; Lim, L.-T.; Selke, S.E.M.; Tsuji, H. Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications, John Wiley & Sons, New York, 2011.
  • Tomaszewski, W. Synthesis of poly (L (+) lactic acid) by polycondensation method in solution. Fibr. Text. East. Eur. 2003, 11, 43.
  • Gu, S.; Yang, M.; Yu, T.; Ren, T.; Ren, J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Inter. 2008, 57, 982–986.
  • Kaplan, D.L. Biopolymers from Renewable Resources; Springer, New York, 1998.
  • Suizu, H.; Takagi, M.; Ajioka, M.; Yamaguchi, A. Purification process of aliphatic polyester. U.S Patent No. US5496923 A, 1996.
  • Kim, K.W.; Woo, S.I. Synthesis of high-molecular-weight poly(l-lactic acid) by direct polycondensation. Macromol. Chem. Phys. 2002, 203, 2245–2250.
  • Cheng, Y.; Deng, S.; Chen, P.; Ruan, R. Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 2009, 4(3), 259–264.
  • Chanfreau, S.; Mena, M.; Porras-Domínguez, J.R.; Ramírez-Gilly, M.; Gimeno, M.; Roquero, P.; Tecante, A.; Bárzana, E. Enzymatic synthesis of poly-L-lactide and poly-L-lactide-co-glycolide in an ionic liquid. Bioproc. Biosyst. Eng. 2010, 33, 629–638.
  • Gilding, D.K.; Reed, A.M. Biodegradable polymers for use in surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polym. 1979, 20, 1459–1464.
  • Ford, T. M. Method for making polymers of alpha-hydroxy acids. U.S. Patent US5310599 A, 1994.
  • Södergård, A.; Näsman, J.H. Stabilization of poly(l-lactide) in the melt. Polym. Degrad. Stabil. 1994, 46, 25–30.
  • Zhang, X.; MacDonald, D.A.; Goosen, M.F.A.; McAuley, K.B. Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxy and carboxylic acid substances. J. Polym. Sci. Pt. A: Polym. Chem. 1994, 32, 2965–2970.
  • Jacobsen, S.; Fritz, H.-G.; Degée, P.; Dubois, P.; Jérôme, R. Continuous reactive extrusion polymerisation of L-lactide—An engineering view. Macromolecular Symposia 2000, 153, 261–273.
  • Banu, I.; Puaux, J.-P.; Bozga, G.; Nagy, I. Modeling of L-lactide polymerization by reactive extrusion. Macromolecular Symposia 2010, 289, 108–118.
  • Bourbigot, S.; Fontaine, G.; Gallos, A.; Bellayer, S. Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym. Advan. Technol. 2011, 22, 30–37.
  • Jacobsen, S.; Fritz, H.G.; Degée, P.; Dubois, P.; Jérôme, R. Single-step reactive extrusion of PLLA in a corotating twin-screw extruder promoted by 2-ethylhexanoic acid tin(II) salt and triphenylphosphine. Polymer 2000, 41, 3395–3403.
  • Sinha Ray, S. Polylactide-based bionanocomposites: A promising class of hybrid materials. Acc. Chem. Res. 2012, 45, 1710–1720.
  • Seavey, K.; Liu, Y. A. Step-Growth Polymerization Process Modeling and Product Design, John Wiley & Sons, New York, 2009.
  • Bailly, M. Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination 2002, 144, 157–162.
  • Madhavan Nampoothiri, K.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501.
  • Seidel, A.; Bickford, M. Eds. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 13, John Wiley & Sons, New York, 2007.
  • Yamane, H.; Sasai, K. Effect of the addition of poly(d-lactic acid) on the thermal property of poly(l-lactic acid). Polymer 2003, 44, 2569–2575.
  • Perego, G.; Cella, G.D.; Bastioli, C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J. Appl. Polym. Sci. 1996, 59, 37–43.
  • Baiardo, M.; Frisoni, G.; Scandola, M.; Rimelen, M.; Lips, D.; Ruffieux, K.; Wintermantel, E. Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appl. Polym. Sci. 2003, 90, 1731–1738.
  • Troupe, R.A.; DiMilla, E. Kinetics of the ethyl alcohol—Lactic acid reaction. Ind. Eng. Chem. 1957, 49, 847–855.
  • Troupe, R.A.; Kobe, K.A. Analysis of lactic acid-lactate ester systems. Anal. Chem. 1950, 22, 545–549.
  • Södergård, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Progr. Polym. Sci. 2002, 27, 1123–1163.
  • Lehermeier, H.J.; Dorgan, J.R.; Way, J.D. Gas permeation properties of poly(lactic acid). J. Membr. Sci. 2001, 190, 243–251.
  • Quynh, T.M.; Mitomo, H.; Zhao, L.; Asai, S. The radiation crosslinked films based on PLLA/PDLA stereocomplex after TAIC absorption in supercritical carbon dioxide. Carbohydr. Polym. 2008, 72, 673–681.
  • Quynh, T.M.; Mitomo, H.; Yoneyama, M.; Hien, N.Q. Properties of radiation-induced crosslinking stereocomplexes derived from poly(L-lactide) and different poly(D-lactide). Polym. Eng. Sci. 2009, 49, 970–976.
  • Fang, Q.; Hanna, M.A. Rheological properties of amorphous and semicrystalline polylactic acid polymers. Indust. Crops Prod. 1999, 10, 47–53.
  • Dorgan, J.R.; Lehermeier, H.; Mang, M. Thermal and rheological properties of commercial-grade poly(lactic acid)s. J. Polym. Environ. 2000, 8, 1–9.
  • Kobayashi, J.; Asahi, T.; Ichiki, M.; Oikawa, A.; Suzuki, H.; Watanabe, T.; Fukada, E.; Shikinami, Y. Structural and optical properties of poly lactic acids. J. Appl. Phys. 1995, 77, 2957–2973.
  • Broz, M.E.; VanderHart, D.L.; Washburn, N.R. Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials 2003, 24, 4181–4190.
  • Grizzi, I.; Garreau, H.; Li, S.; Vert, M. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 1995, 16, 305–311.
  • Oyama, H.T.; Tanaka, Y.; Kadosaka, A. Rapid controlled hydrolytic degradation of poly(l-lactic acid) by blending with poly(aspartic acid-co-l-lactide). Polym. Degrad. Stabil. 2009, 94, 1419–1426.
  • Migliaresi, C.; Fambri, L.; Cohn, D. A study on the in vitro degradation of poly(lactic acid). J. Biomater. Sci. Polym. 1994, 5, 591–606.
  • Chawla, A.S.; Chang, T.M.S. In-Vivo degradation of poly(lactic acid) of different molecular weights. Available at http://informahealthcare.com/doi/abs/10.3109/10731198509118848?journalCode=abb (accessed Apr 12, 2013).
  • Kulkarni, R.K.; Moore, E.G.; Hegyeli, A.F.; Leonard, F. Biodegradable poly(lactic acid) polymers. J. Biomed. Mater. Res. 1971, 5, 169–181.
  • Odian, G. Principles of Polymerization, John Wiley & Sons, New York, 2004.
  • Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S.N. Synthesis of poly(lactic acid): A review. J. Macromol. Sci. Pt. C: Polym. Rev. 2005, 45, 325–349.
  • Higashimura, T.; Kusano, H.; Masuda, T.; Okamura, S. Rate constant of propagation in the cationic polymerization of styrene catalyzed by BF3 O(C2 H5)2. J. Polym. Sci. Pt. B: Polym. Lett. 1971, 9, 463–466.
  • Sawamoto, M.; Higashimura, T. Stopped-flow study of the cationic polymerization of styrene derivatives. 1. Direct observation of the propagating species in the polymerization of p-methoxystyrene in 1,2-dichloroethane. Macromolecules 1978, 11, 328–332.
  • Yu, Y.; Storti, G.; Morbidelli, M. Kinetics of ring-opening polymerization of l,l-lactide. Ind. Eng. Chem. Res. 2011, 50, 7927–7940.
  • Yu, Y.; Storti, G.; Morbidelli, M. Ring-opening polymerization of l,1-lactide: Kinetic and modeling study. Macromolecules 2009, 42, 8187–8197.
  • Banu, I.; Puaux, J.-P.; Bozga, G.; Nagy, I. Modeling of L-lactide polymerization by reactive extrusion. Macromolecular Symposia 2010, 289, 108–118.
  • Puaux, J.-P.; Banu, I.; Nagy, I.; Bozga, G. A study of L-lactide ring-opening polymerization kinetics. Macromolecular Symposia 2007, 259, 318–326.
  • Eguiburu, J.L.; Fernandez-Berridi, M.J.; Cossío, F.P.; Román, J.S. Ring-opening polymerization of l-lactide initiated by (2-methacryloxy)ethyloxy−Aluminum trialkoxides. 1. Kinetics. Macromolecules 1999, 32, 8252–8258.
  • Wu, J.-C.; Huang, B.-H.; Hsueh, M.-L.; Lai, S.-L.; Lin, C.-C. Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides. Polymer 2005, 46, 9784–9792.
  • Zhang, L.; Shen, Z.; Yu, C.; Fan, L. Ring-opening polymerization of D,L-lactide by rare earth 2,6-dimethylaryloxide. Polym. Inter. 2004, 53, 1013–1016.
  • Dubois, P.; Jacobs, C.; Jerome, R.; Teyssie, P. Macromolecular engineering of polylactones and polylactides. 4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules 1991, 24, 2266–2270.
  • Witzke, D.R.; Narayan, R.; Kolstad, J.J. Reversible kinetics and thermodynamics of the homopolymerization of l-lactide with 2-ethylhexanoic acid tin(ii) salt. Macromolecules 1997, 30, 7075–7085.
  • Klompmaker, J.; Jansen, H.W B.; Veth, R.P.H.; de Groot, J.H.; Nijenhuis, A.J.; Pennings, A.J. Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials 1991, 12, 810–816.
  • Ishaug-Riley, S.L. Bone formation by three-dimensional osteoblast culture in biodegradable poly (alpha-hydroxy ester) scaffolds. J. Biomed. Mater. Res. 1997, 36(1), 17–28.
  • Ishaug-Riley, S.L.; Crane-Kruger, G.M.; Yaszemski, M.J.; Mikos, A.G. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998, 19, 1405–1412.
  • Peter, S.J.; Miller, M.J.; Yasko, A.W.; Yaszemski, M.J.; Mikos, A.G. Polymer concepts in tissue engineering. J. Biomed. Mater. Res. 1998, 43, 422–427.
  • Freed, L.E.; Marquis, J.C.; Nohria, A.; Emmanual, J.; Mikos, A.G.; Langer, R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 1993, 27, 11–23.
  • Kim, W.; Vacanti, J.; Cima, L.; Mooney, D.; Upton, J.; Puelacher, W.; Vacanti, C. Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast. Reconstr. Surg. 1994, 94, 233–237; discussion 238–240.
  • Uematsu, K.; Hattori, K.; Ishimoto, Y.; Yamauchi, J.; Habata, T.; Takakura, Y.; Ohgushi, H.; Fukuchi, T.; Sato, M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005, 26, 4273–4279.
  • Engelhardt, E.-M.; Micol, L.A.; Houis, S.; Wurm, F.M.; Hilborn, J.; Hubbell, J.A.; Frey, P. A collagen-poly(lactic acid-co-ϵ-caprolactone) hybrid scaffold for bladder tissue regeneration. Biomaterials 2011, 32, 3969–3976.
  • Nakanishi, Y.; Chen, G.; Komuro, H.; Ushida, T.; Kaneko, S.; Tateishi, T.; Kaneko, M. Tissue-engineered urinary bladder wall sing PLGA mesh-collagen hybrid scaffolds: a omparison study of collagen sponge and gel as a caffold. J. Pediat. Surg. 2003, 38, 1781–1784.
  • Behonick, D.J.; Xing, Z.; Lieu, S.; Buckley, J.M.; Lotz, J.C.; Marcucio, R.S.; Werb, Z.; Miclau, T.; Colnot, C. Role of matrix metalloproteinase 13 in both endochondral and intramembranous ossification during skeletal regeneration. PLoS ONE 2007, 2, e1150.
  • Xiong, Z.; Yan, Y.; Wang, S.; Zhang, R.; Zhang, C. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition. Scripta Mater. 2002, 46, 771–776.
  • Xiong, Z.; Yan, Y.; Zhang, R.; Sun, L. Fabrication of porous poly(l-lactic acid) scaffolds for bone tissue engineering via precise extrusion. Scripta Mater. 2001, 45, 773–779.
  • Montjovent, M.-O.; Mathieu, L.; Hinz, B.; Applegate, L.L.; Bourban, P.-E.; Zambelli, P.-Y.; Månson, J.-A.; Pioletti, D.P. Biocompatibility of bioresorbable poly(l-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Tissue Eng. 2005, 11, 1640–1649.
  • Montjovent, M.-O.; Mark, S.; Mathieu, L.; Scaletta, C.; Scherberich, A.; Delabarde, C.; Zambelli, P.-Y.; Bourban, P.-E.; Applegate, L.A.; Pioletti, D.P. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone 2008, 42, 554–564.
  • Miao, X.; Tan, D.M.; Li, J.; Xiao, Y.; Crawford, R. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Acta Biomater. 2008, 4, 638–645.
  • Liao, S.S.; Cui, F.Z.; Zhang, W.; Feng, Q.L. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. Pt. B: Appl. Biomater. 2004, 69B, 158–165.
  • Deng, X.-L.; Sui, G.; Zhao, M.-L.; Chen, G.-Q.; Yang, X.-P. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J. Biomater. Sci. Polym. Ed. 2007, 18, 117–130.
  • Torabinejad, B.; Mohammadi-Rovshandeh, J.; Davachi, S.M.; Zamanian, A. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of l-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C 2014, 42, 199–210.
  • Jiang, T.; Abdel-Fattah, W.I.; Laurencin, C.T. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 2006, 27, 4894–4903.
  • Niu, X.; Feng, Q.; Wang, M.; Guo, X.; Zheng, Q. In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym. Degrad. Stabil. 2009, 94, 176–182.
  • Prabaharan, M.; Rodriguez-Perez, M.A.; de Saja, J.A.; Mano, J.F. Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J. Biomed. Mater. Res. Pt. B: Appl. Biomater. 2007, 81B, 427–434.
  • Oh, S.H.; Kang, S.G.; Kim, E.S.; Cho, S.H.; Lee, J.H. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 2003, 24, 4011–4021.
  • Quigley, A.F.; Bulluss, K.J.; Kyratzis, I.L.B.; Gilmore, K.; Mysore, T.; Schirmer, K.S.U.; Kennedy, E.L.; O'Shea, M.; Truong, Y B.; Edwards, S.L.; Peeters, G.; Herwig, P.; Razal, J.M.; Campbell, T.E.; Lowes, K.N.; Higgins, M.J.; Moulton, S.E.; Murphy, M.A.; Cook, M.J.; Clark, G.M.; Wallace, G.G.; Kapsa, R.M.I. Engineering a multimodal nerve conduit for repair of injured peripheral nerve. J. Neural Eng. 2013, 10, 016008.
  • Eufinger, H.; Rasche, C.; Lehmbrock, J.; Wehmöller, M.; Weihe, S.; Schmitz, I.; Schiller, C.; Epple, M. Performance of functionally graded implants of polylactides and calcium phosphate/calcium carbonate in an ovine model for computer assisted craniectomy and cranioplasty. Biomaterials 2007, 28, 475–485.
  • Evans, G.R.D.; Brandt, K.; Widmer, M.S.; Lu, L.; Meszlenyi, R.K.; Gupta, P.K.; Mikos, A.G.; Hodges, J.; Williams, J.; Gürlek, A.; Nabawi, A.; Lohman, R.; Patrick Jr. C.W. In vivo evaluation of poly(l-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999, 20, 1109–1115.
  • Evans, G.R.D.; Brandt, K.; Widmer, M.; Gürlek, A.; Savel, T.; Gupta, P.; Lohman, R.; Williams, J.; Hodges, J.; Nabawi, A.; Patrick, C.; Mikos, A. Tissue engineered nerve conduits: The use of biodegradable poly-DL-lactic-co-glycolic acid (PLGA) scaffolds in peripheral nerve regeneration. In: Stark, G.B.; Horch, R.; TÁczos, E. Eds.; Biological Matrices and Tissue Reconstruction, Springer, Berlin/Heidelberg, 1998; pp. 225–235.
  • Kumbar, S.G.; Nukavarapu, S.P.; James, R.; Nair, L.S.; Laurencin, C.T. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 2008, 29, 4100–4107.
  • Yang, J.; Shi, G.; Bei, J.; Wang, S.; Cao, Y.; Shang, Q.; Yang, G.; Wang, W. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J. Biomed. Mater. Res. 2002, 62, 438–446.
  • Lee, J.H.; Park, T.G.; Park, H.S.; Lee, D.S.; Lee, Y.K.; Yoon, S.C.; Nam, J.-D. Thermal and mechanical characteristics of poly(l-lactic acid) nanocomposite scaffold. Biomaterials 2003, 24, 2773–2778.
  • Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351.
  • Yamamoto, T.; Hayakawa, K.; Tabata, Y.; Shimizu, Y.; Ikada, Y. Transcatheter arterial embolization using poly-L-lactic acid microspheres. Radiat. Med. 2003, 21, 150–154.
  • Crotts, G.; Park, T.G. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: Release kinetics and stability issues. J. Microencaps. 1998, 15, 699–713.
  • Cohen, S.; Yoshioka, T.; Lucarelli, M.; Hwang, L.H.; Langer, R. Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 1991, 8, 713–720.
  • Li, J.K.; Wang, N.; Wu, X.S. A novel biodegradable system based on gelatin nanoparticles and poly(lactic-co-glycolic acid) microspheres for protein and peptide drug delivery. J. Pharma. Sci. 1997, 86, 891–895.
  • Sinha, V.R.; Trehan, A. Biodegradable microspheres for protein delivery. J. Contr. Rel. 2003, 90, 261–280.
  • Liang, L.S.; Jackson, J.; Min, W.; Risovic, V.; Wasan, K.M.; Burt, H.M. Methotrexate loaded poly(l-lactic acid) microspheres for intra-articular delivery of methotrexate to the joint. J. Pharma. Sci. 2004, 93, 943–956.
  • Liang, L.S.; Wong, W.; Burt, H.M. Pharmacokinetic study of methotrexate following intra-articular injection of methotrexate loaded poly(L-lactic acid) microspheres in rabbits. J. Pharma. Sci. 2005, 94, 1204–1215.
  • Schliephake, H.; Weich, H.A.; Schulz, J.; Gruber, R. In vitro characterization of a slow release system of polylactic acid and rhBMP2. J. Biomed. Mater. Res. Pt. A 2007, 83A, 455–462.
  • Schliephake, H.; Weich, H.A.; Dullin, C.; Gruber, R.; Frahse, S. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid—An experimental study in rats. Biomaterials 2008, 29, 103–110.
  • Zhao, Y.; Wang, Z.; Wang, J.; Mai, H.; Yan, B.; Yang, F. Direct synthesis of poly(D,L-lactic acid) by melt polycondensation and its application in drug delivery. J. Appl. Polym. Sci. 2004, 91, 2143–2150.
  • Chandrashekar, G.; Udupa, N. Biodegradable injectable implant systems for long term drug delivery using poly (lactic-co-glycolic) acid copolymers. J. Pharm. Pharmacol. 1996, 48, 669–674.
  • Kang, S.-W.; Jeon, O.; Kim, B.S. Poly(lactic-co-glycolic acid) Microspheres as an injectable scaffold for cartilage tissue engineering. Tissue Eng. 2005, 11, 438–447.
  • Krause, H.-J.; Schwarz, A.; Rohdewald, P. Polylactic acid nanoparticles, a colloidal drug delivery system for lipophilic drugs. Inter. J. Pharma. 1985, 27, 145–155.
  • Jeong, B.; Bae, Y.H.; Lee, D.S.; Kim, S.W. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388, 860–862.
  • Smith, A.; Hunneyball, lan M. Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Inter. J. Pharma. 1986, 30, 215–220.
  • Pitt, C.G.; Jeffcoat, A.R.; Zweidinger, R.A.; Schindler, A. Sustained drug delivery systems. I. The permeability of poly(ε-caprolactone), poly(DL-lactic acid), and their copolymers. J. Biomed. Mater. Res. 1979, 13, 497–507.
  • Kenawy, E.-R.; Bowlin, G.L.; Mansfield, K.; Layman, J.; Simpson, D.G.; Sanders, E.H.; Wnek, G.E. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Contr. Rel. 2002, 81, 57–64.
  • Xiong, X.Y.; Li, Y.P.; Li, Z.L.; Zhou, C.L.; Tam, K.C.; Liu, Z.Y.; Xie, G.X. Vesicles from Pluronic/poly(lactic acid) block copolymers as new carriers for oral insulin delivery. J. Contr. Rel. 2007, 120, 11–17.
  • Riley, T.; Stolnik, S.; Heald, C.R.; Xiong, C.D.; Garnett, M.C.; Illum, L.; Davis, S.S.; Purkiss, S.C.; Barlow, R.J.; Gellert, P.R. Physicochemical Evaluation of nanoparticles assembled from poly(lactic acid)−poly(ethylene glycol) (PLA−PEG) block copolymers as drug delivery vehicles. Langmuir 2001, 17, 3168–3174.
  • Schmidmaier, G.; Wildemann, B.; Lübberstedt, M.; Haas, N.P.; Raschke, M. IGF-I and TGF-Beta 1 incorporated in a poly(D,L-lactide) implant coating stimulates osteoblast differentiation and collagen-1 production but reduces osteoblast proliferation in cell culture. J. Biomed. Mater. Res. Pt. B: Appl. Biomater. 2003, 65B, 157–162.
  • Schmidmaier, G.; Wildemann, B.; Stemberger, A.; Haas, N.P.; Raschke, M. Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth factors. J. Biomed. Mater. Res. 2001, 58, 449–455.
  • Gollwitzer, H.; Ibrahim, K.; Meyer, H.; Mittelmeier, W.; Busch, R.; Stemberger, A. Antibacterial poly(d,l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J. Antimicrob. Chemother. 2003, 51, 585–591.
  • Park, Y.J.; Lee, Y.M.; Park, S.N.; Lee, J.Y.; Ku, Y.; Chung, C.P.; Lee, S.J. Enhanced guided bone regeneration by controlled tetracycline release from poly(L-lactide) barrier membranes. J. Biomed. Mater. Res. 2000, 51, 391–397.
  • Perlstein, I.; Connolly, J.M.; Cui, X.; Song, C.; Li, Q.; Jones, P.L.; Lu, Z.; DeFelice, S.; Klugherz, B.; Wilensky, R.; Levy, R.J. DNA delivery from an intravascular stent with a denatured collagen-polylactic-polyglycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther. 2003, 10, 1420–1428.
  • Dürselen, L.; Dauner, M.; Hierlemann, H.; Planck, H.; Claes, L.E.; Ignatius, A. Resorbable polymer fibers for ligament augmentation. J. Biomed. Mater. Res. 2001, 58, 666–672.
  • Dumitriu, S. Polymeric Biomaterials, Revised and Expanded, Taylor & Francis, New York, 2001.
  • Absorbable Suture Caprosyn. Available at: http://www.syneture.com.
  • Davachi, S.M.; Kaffashi, B.; Roushandeh, J.M. Synthesis and characterization of a novel terpolymer based on L-lactide, glycolide, and trimethylene carbonate for specific medical applications. Polym. Advan. Technol. 2012, 23, 565–573.
  • Davachi, S.M.; Kaffashi, B.; Roushandeh, J.M.; Torabinejad, B. Investigating thermal degradation, crystallization and surface behavior of l-lactide, glycolide and trimethylene carbonate terpolymers used for medical applications. Mater. Sci. Eng. C 2012, 32, 98–104.
  • Ueda, H.; Tabata, Y. Polyhydroxyalkanonate derivatives in current clinical applications and trials. Advan. Drug Deliv. Rev. 2003, 55, 501–518.
  • Tyrell, J.; Silberman, H.; Chandrasoma, P.; Niland, J.; Shull, J. Absorbable versus permanent mesh in abdominal operations. Surg. Gynecol. Obstet. 1989, 168, 227–232.
  • Klinge, U.; Klosterhalfen, B.; Conze, J.; Limberg, W.; Obolenski, B.; Öttinger, A.P.; Schumpelick, V. Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall. Euro. J. Surg. 1998, 164, 951–960.
  • Klinge, U.; Klosterhalfen, B.; Müller, M.; Anurov, M.; Öttinger, A.; Schumpelick, V. Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abdominal wall repair. Biomaterials 1999, 20, 613–623.
  • Mooney, D.J.; Mazzoni, C.L.; Breuer, C.; McNamara, K.; Hern, D.; Vacanti, J.P.; Langer, R. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 1996, 17, 115–124.
  • Sondhi, N.; Ellis, F.D.; Hamed, L.M.; Helveston, E.M. Evaluation of an absorbable muscle sleeve to limit postoperative adhesions in strabismus surgery. Ophthla. Surg. 1987, 18, 441–443.
  • Dasika, U.; Widmann, W. Does lining polypropylene with polyglactin mesh reduce intraperitoneal adhesions? Am. Surg. 1998, 64, 817–819; discussion 820.
  • Kinoshita, Y.; Yokoya, S.; Amagasa, T. Reconstruction of jawbones using poly(L-lactic acid) mesh and transplantation of particulate cancellous bone and marrow: Long-term observation of 40 cases. Int. J. Oral Maxillofac. Surg. 2003, 32, 117–120.
  • Kinoshita, Y.; Kirigakubo, M.; Kobayashi, M.; Tabata, T.; Shimura, K.; Ikada, Y. Study on the efficacy of biodegradable polyf(l-lactide) mesh for supporting transplanted particulate cancellous bone and marrow: experiment involving subcutaneous implantation in dogs. Biomaterials 1993, 14, 729–736.
  • Takanori, O.; Hiroki, M.; Toshihiro, O. The development of functional biomaterials of stomatognathic system. Adaptation and limitation by the clinical application of poly-L-lactic acid mesh mandible reconstruction tray. J-Global, Japan, 2003, p. 63.
  • Ehmke, B.; Rüdiger, S.G.; Hommens, A.; Karch, H.; Flemmig, T.F. Guided tissue regeneration using a polylactic acid barrier. J. Clin. Periodontol. 2003, 30, 368–374.
  • Ochi, M.; Adachi, N.; Nobuto, H.; Yanada, S.; Ito, Y.; Agung, M. Articular cartilage repair using tissue engineering technique—Novel approach with minimally invasive procedure. Artif. Organs 2004, 28, 28–32.
  • Lee, J.Y.; Bashur, C.A.; Goldstein, A.S.; Schmidt, C.E. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 2009, 30, 4325–4335.
  • Chen, G.; Sato, T.; Sakane, M.; Ohgushi, H.; Ushida, T.; Tanaka, J.; Tateishi, T. Application of PLGA-collagen hybrid mesh for three-dimensional culture of canine anterior cruciate ligament cells. Mater. Sci. Eng. C 2004, 24, 861–866.
  • Chen, G.; Tanaka, J.; Tateishi, T. Osteochondral tissue engineering using a PLGA–collagen hybrid mesh. Mater. Sci. Eng. C 2006, 26, 124–129.
  • Chen, G.; Sato, T.; Ohgushi, H.; Ushida, T.; Tateishi, T.; Tanaka, J. Culturing of skin fibroblasts in a thin PLGA–collagen hybrid mesh. Biomaterials 2005, 26, 2559–2566.
  • Losee, J.E.; Karmacharya, J.; Gannon, F.H.; Slemp, A.E.; Ong, G.; Hunenko, O.; Gorden, A.D.; Bartlett, S.P.; Kirschner, R.E. Reconstruction of the immature craniofacial skeleton With a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh. J. Craniof. Surg. 2003, 14(1), 117–124.
  • Matsusue, Y.; Yamamuro, T.; Oka, M.; Shikinami, Y.; Hyon, S.-H.; Ikada, Y. In vitro and in vivo studies on bioabsorbable ultra-high-strength poly(L-lactide) rods. J. Biomed. Mater. Res. 1992, 26, 1553–1567.
  • Matsusue, Y.; Yamamuro, T.; Yoshii, S.; Oka, M.; Ikada, Y.; Hyon, S.-H.; Shikinami, Y. Biodegradable screw fixation of rabbit tibia proximal osteotomies. J. Appl. Biomater. 1991, 2, 1–12.
  • Furukawa, T.; Matsusue, Y.; Yasunaga, T.; Shikinami, Y.; Okuno, M.; Nakamura, T. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (l-lactide) composite rods for internal fixation of bone fractures. Biomaterials 2000, 21, 889–898.
  • Hasegawa, Y.; Sakano, S.; Iwase, T.; Warashina, H. The long-term behavior of poly-L-lactide screws in a minipig fracture model: Preliminary report. J. Biomed. Mater. Res. 2002, 63, 679–685.
  • Laine, P.; Kontio, R.; Lindqvist, C.; Suuronen, R. Are there any complications with bioabsorbable fixation devices?: A 10 year review in orthognathic surgery. Inter. J. Oral Maxillofac. Surg. 2004, 33, 240–244.
  • Maurer, P.; Holweg, S.; Knoll, W.-D.; Schubert, J. Study by finite element method of the mechanical stress of selected biodegradable osteosynthesis screws in sagittal ramus osteotomy. Br. J. Oral Maxillofac. Surg. 2002, 40, 76–83.
  • Ketola-Kinnula, T.; Suuronen, R.; Kontio, R.; Laine, P.; Lindqvist, C. Bioabsorbable plates and screws for fixation of mandibulotomies in ablative oral cancer surgery. J. Oral Maxillofac. Surg. 2010, 68, 1753–1762.
  • Isama, K.; Tsuchiya, T. Enhancing effect of poly(l-lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells. Biomaterials 2003, 24, 3303–3309.
  • Oba, Y.; Yasue, A.; Kaneko, K.; Uchida, R.; Shioyasono, A.; Moriyama, K. Comparison of stability of mandibular segments following the sagittal split ramus osteotomy with poly-l-lactic acid (PLLA) screws and titanium screws fixation. Orthodont. Waves 2008, 67, 1–8.
  • Hovis, W.D.; Kaiser, B.W.; Watson, J.T.; Bucholz, R.W. Treatment of syndesmotic disruptions of the ankle with bioabsorbable screw fixation. J. Bone Joint Surg Am. 2002, 84, 26–31.
  • Suuronen, R. Comparison of absorbable self-reinforced poly-L-lactide screws and metallic screws in the fixation of mandibular condyle osteotomies: An experimental study in sheep. J. Oral Maxillofac. Surg. 1991, 49, 989–995.
  • Kukk, A.; Nurmi, J.T. A retrospective follow-up of ankle fracture patients treated with a biodegradable plate and screws. Foot Ankle Surg. 2009, 15, 192–197.
  • Böstman, O.M. Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws A three- to nine-year follow-up study. J. Bone Joint Surg. Br. 1998, 80-B, 333–338.
  • Van den Bekerom, M.P.J.; Hogervorst, M.; Bolhuis, H.W.; van Dijk, C.N. Operative aspects of the syndesmotic screw: Review of current concepts. Injury 2008, 39, 491–498.
  • Schepers, T.; Van Lieshout, E.M.M.; Van der Linden, H.J.P.; De Jong, V.M.; Goslings, J.C. Aftercare following syndesmotic screw placement: A systematic review. J. Ankle Surg. 2013, 52(4), 491–494.
  • Joukainen, A.; Partio, E.K.; Waris, P.; Joukainen, J.; Kröger, H.; Törmälä, P.; Rokkanen, P. Bioabsorbable screw fixation for the treatment of ankle fractures. J. Orthop. Sci. 2007, 12, 28–34.
  • Joukainen, A.; Pihlajamäki, H.; Mäkelä, E.A.; Ashammakhi, N.; Viljanen, J.; Pätiälä, H.; Kellomäki, M.; Törmälä, P.; Rokkanen, P. Strength retention of self-reinforced drawn poly-L/DL-lactide 70/30 (SR-PLA70) rods and fixation properties of distal femoral osteotomies with these rods. An experimental study on rats. J. Biomater. Sci. Polym. Ed. 2000, 11, 1411–1428.
  • Pietrzak, W.S.; Caminear, D.S.; Perns, S.V. Mechanical characteristics of an absorbable copolymer internal fixation pin. J. Foot Ankle Surg. 2002, 41, 379–388.
  • Majola, A.; Vainionpää, S.; Rokkanen, P.; Mikkola, H.-M.; Törmälä, P. Absorbable self-reinforced polylactide (SR-PLA) composite rods for fracture fixation: strength and strength retention in the bone and subcutaneous tissue of rabbits. J. Mater. Sci. Mater. Med. 1992, 3, 43–47.
  • Shetty, V.; Caputo, A.A.; Kelso, I. Torsion-axial force characteristics of SR-PLLA screws. J. Cranio-Maxillofac. Surg. 1997, 25, 19–23.
  • Waris, T.; Pohjonen, T.; Törmälä, P. Self-reinforced absorbable polylactide (SR-PLLA) plates in craniofacial surgery. Eur. J. Plast. Surg. 1994, 17, 236–238.
  • Eppley, B.L.; Morales, L.; Wood, R.; Pensler, J.; Goldstein, J.; Havlik, R.J.; Habal, M.; Losken, A.; Williams, J.K.; Burstein, F.; Rozzelle, A.A.; Sadove, A.M. Resorbable PLLA-PGA plate and screw fixation in pediatric craniofacial surgery: Clinical experience in 1883 Patients. Plast. Reconstruct. Surg. 2004, 114, 850–856.
  • Barber, F.A.; Elrod, B.F.; McGuire, D.A.; Paulos, L.E. Bioscrew fixation of patellar tendon autografts. Biomaterials 2000, 21, 2623–2629.
  • Ito, H.; Minami, A.; Tanino, H.; Matsuno, T. Fixation with poly-L-lactic acid screws in hip osteotomy: 68 hips followed for 18–46 months. Acta Orthop. Scand. 2002, 73, 60–64.
  • Ito, H.; Matsuno, T.; Minami, A. Fixation with poly-L-lactide screws in hip osteotomies. Clin. Orthopaed. Rel. Res. 2006, 443, 169–175.
  • Haers, P.E.; Suuronen, R.; Lindqvist, C.; Sailer, H. Biodegradable polylactide plates and screws in orthognathic surgery: technical note. J. Cranio-Maxillofac. Surg. 1998, 26, 87–91.
  • Bessho, K.; Iizuka, T.; Murakami, K.-I. A bioabsorbable poly-L-lactide miniplate and screw system for osteosynthesis in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 1997, 55, 941–945.
  • Suzuki, T.; Kawamura, H.; Kasahara, T.; Nagasaka, H. Resorbable poly-l-lactide plates and screws for the treatment of mandibular condylar process fractures: a clinical and radiologic follow-up study. J. Oral Maxillofac. Surg. 2004, 62, 919–924.
  • Vaccaro, A.R.; Singh, K.; Haid, R.; Kitchel, S.; Wuisman, P.; Taylor, W.; Branch, C.; Garfin, S. The use of bioabsorbable implants in the spine. Spine J. 2003, 3, 227–237.
  • Van Dijk, M.; Smit, T.H.; Sugihara, S.; Burger, E.H.; Wuisman, P.I. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly (l-lactic Acid) and titanium cages. Spine 2002, 27, 682.
  • Van Dijk, M.; Tunc, D.C.; Smit, T.H.; Higham, P.; Burger, E.H.; Wuisman, P.I.J.M. In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J. Biomed. Mater. Res. 2002, 63, 752–759.
  • Wuisman, P.I.J.M.; Smit, T.H. Bioresorbable polymers: heading for a new generation of spinal cages. Eur. Spine J. 2006, 15, 133–148.
  • Hojo, Y.; Kotani, Y.; Ito, M.; Abumi, K.; Kadosawa, T.; Shikinami, Y.; Minami, A. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage. Biomaterials 2005, 26, 2643–2651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.