243
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Novel Thermoresponsive Biodegradable Nanocomposite Hydrogels for Dual Function in Biomedical Applications

, , , &

References

  • Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial nanoparticle production. In: Niemeyer, C.M. and C.A. Mirkin, C.A., eds. Nanobiotechnology, Wiley-VCH, Weinheim, 2005, Chapter 9, p. 126.
  • Bhattacharya, D.; Gupta, R.K. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005, 25(4), 199–204.
  • Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008, 10(3), 507–517.
  • D'Este, M.; Alini, M.; Eglin, D. Single step synthesis and characterization of thermoresponsive hyaluronan hydrogels. Carbohydr. Polym. 2012, 90(3), 1378–1385.
  • Nagarwal, R.C.; Kant, S.; Singh, P.N.; Maiti, P.; Pandit, J.K. Polymeric nanoparticulate system: A potential approach for ocular drug delivery. J. Control Release 2009, 136(1), 2–13.
  • Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchinda, M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 2000, 16, 452–455.
  • Chen, M.; Wang, L.Y.; Han, J.T.; Zhang, J.Y.; Li, Z.Y.; Qian, D.J. Preparation and study of polyacrylamide-stabilized silver nanoparticles through a one-pot process. J. Phys. Chem. B 2006, 110, 11224–11231.
  • Lou, X.W.; Yuan, C.; Archer, L.A. An unusual example of hyperbranched metal nanocrystals and their shape evolution. Chem. Mater. 2006, 18(17), 3921–3923.
  • Kuo, P.-L.; Chen, W.-F. Formation of silver nanoparticles under structured amino groups in pseudo-dendritic poly (allylamine) derivatives. J. Phys. Chem. B 2003, 107(41), 11267–11272.
  • Manjula, B.; Varaprasad, K.; Sadiku, R.; Ramam, K.; Reddy, G.V.S.; Raju, K.M. Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process. J. Biomed. Mater. Res., Part A 2014, 102, 928–934.
  • Edman, P.; Ekman, B.; Sjoholm, I. Immobilization of proteins in microspheres of biodegradable polyacryldextran. J. Pharm. Sci. 1980, 69(7), 838–842.
  • Kim, S.Y.; Cho, S.H.; Lee, Y.M. Biotin-conjugated block copolymeric nanoparticles as tumor-targeted drug delivery systems. Macromol. Res. 2007, 15(7), 646–655.
  • Lu, W.; Park, T.G. Protein release from poly (lactic-co-glycolic acid) microspheres: protein stability problems. J. Pharm. Sci. Technol. 1995, 49(1), 13.
  • Klempner, D.; Sperling, L.H.; Utracki, L.A. Interpenetrating Polymer Networks, Advances in Chemistry Series 239. American Chemical Society, Washington, 1994.
  • Raveendran, S.; Poulose, A.C.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr. Polym. 2013, 91(1), 22–32.
  • Sperling, L.H. Interpenetrating Polymer Networks, Related Materials. Encyclopedia of Polymer Science and Technology, Plenum Press, New York, 1982.
  • Peppas, N.A.; Mikos, A.G. Preparation methods and structure of hydrogels. In: Peppas, N.A., ed. Hydrogels in Medicine and Pharmacy, Vol. 1, Fundamentals ed., CRC Press, Boca Raton, 1986, p. 1.
  • Karadağ, E.; Saraydın, D.; Güven, O.; Radiation induced superabsorbent hydrogels. Acrylamide/itaconic acid copolymers. Macromol. Mater. Eng. 2001, 286(1), 34–42.
  • Saraydin, D.; Karadag, E.; Güven, O. Relationship between the swelling process and the releases of water soluble agrochemicals from radiation cross-linked acrylamide/itaconic acid copolymers. Polym. Bull. 2000, 45, 287–294.
  • Peppas, N.A.; Huang, Y.; Torres-Lugo, M.; Ward, J.H.; Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2000, 2, 9–29.
  • Karadağ1, E.; Saraydin, D.; Çaldiran, Y.; Güven, O. Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polym. Adv. Technol. 2000, 11, 59–68.
  • Saraydin, D.; Karadag, E.; Caldiran, Y.; Guven, O. Nicotine-slective radiation-induced poly(acrylamide/maleic acid) hydrogel. Radiat. Phys. Chem. 2001, 60(3), 203–210.
  • Benee, L.S.; Snowden, M.J.; Chowdhry, B.Z. Smart Materials. Encyclopedia of Polymer Science and Technology, Wiley, New York, 2002.
  • Vinogradov, S. Colloidal microgels in drug delivery applications. Curr. Pharm. Des. 2006, 12(36), 4703–4712.
  • Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: Preparation, properties and interactions with cells. Adv. Drug Delivery Rev. 2002, 54, 135–147.
  • Lu, Y.; Chen, S.C. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv. Drug Delivery Rev. 2004, 56(11), 1621–1633.
  • Deva, A.; Binulala, N.S.; Anithaa, A.; Naira, S.V.; Furuikeb, T.; Tamurab, H.; Jayakumara, R. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym. 2010, 80, 833–838.
  • Naghash, H.J.; Okay, O. Formation and structure of polyacrylamide gels. J. Appl. Polym. Sci. 1996, 60(7), 971–979.
  • Blanco, M.D.; García, O.; Olmo, R.; Teijón, J.M.; Katime, I. Release of 5-fluorouracil from poly(acrylamide-co-monopropyl itaconate) hydrogels. J. Chromatogr. B: Biomed. Sci. Appl. 1996, 680(1–2), 243–253.
  • Chen, J.; Park, H.; Park, K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res. Part A 1999, 44(1), 53–62.
  • Ferreira, L.; Vidal, M.M.; Gil, M.H. Design of a drug-delivery system based on polyacrylamide hydrogels. Evaluation of structural properties. Chem. Educ. 2001, 6(2), 100–103.
  • Muniz, E.C.; Geuskens, G. Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). Macromolecules 2001, 34(13), 4480–4484.
  • Krušič, M.K.; Džunuzović, E.; Trifunović, S.; Filipović, J. Semi-IPNs based on polyacrylamide and poly(itaconic acid). Polym. Bull. 2003, 51(2), 159–166.
  • Mishra, S.; Bajpai, R.; Katare, R.; Bajpai, A.K. Radiation induced cross-linking effect on semi-interpenetrating polymer networks of poly(vinyl alcohol). eXPRESS Polym. Lett. 2007, 1(7), 407–415.
  • Ermis, D.; Yuksel, A. Preparation of spray-dried microspheres of indomethacin and examination of the effects of coating on dissolution rates. J. Microencapsulation 1999, 16(3), 315–324.
  • Sommadossi, J.-P.; Gewirtz, D.A.; Diasiog, R.B.; Aubert, C.; Cano, J.-P.; Goldman, D. Rapid catabolism of 5-fluorouracil in freshly isolated rat hepatocytes as analyzed by high performance liquid chromatography. J. Biol. Chem. 1982, 257(14), 8171–8176.
  • Zhanga, Z.; Zhanga, Q.; Wanga, J.; Shia, X.; Zhanga, J.; Songa, H. Synthesis and drug release in vitro of porphyran carrying 5-Fluorouracil. Carbohydr. Poly. 2010, 79(3), 628–632.
  • Varaprasad, K.; Mohan, Y.M.; Vimala, K.; Raju K.M. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. App. Polym. Sci. 2011, 121, 784–796.
  • Tripathy, A.; Ashok, M.; Raichur, N.; Chandrasekaran, N.; Prathna, T.C.; Mukherjee, A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanopart. Res. 2010, 12(1), 237–246.
  • Thomasa, V.; Yallapub, M.M.; Sreedharc, B.; Bajpai, S.K. A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J. Colloid Interface Sci. 2007, 315(1), 389–395.
  • Chouhan, R.; Bajpai, A.K. An in vitro release study of 5-fluorouracil (5-FU) from swellable poly-(2-hydroxyethyl methacrylate) (PHEMA) nanoparticles. J. Mater. Sci.: Mater. Med. 2009, 20(5), 1103–1114.
  • Jubya, K.A.; Dwivedia, C.; Kumara, M.; Kotab, S.; Misrab, H.S.; Bajaja, P.N. Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr. Polym. 2012, 89(3), 906–913.
  • Zhang, X.-Z.; Yang, Y.-Y.; Chung, T.-S. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels. Langmuir 2002, 18, 2538–2542.
  • Yildiz, B.; Işik, B.; Kiş, M. Synthesis of thermoresponsive N-isopropylacrylamide–N-hydroxymethyl acrylamide hydrogels by redox polymerization. Polymer 2001, 42(6), 2521–2529.
  • Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controlled Release 1987, 5(1), 37–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.