144
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Dual Effect of Polyphosphazene and Halloysite Nanotubes in the Blends of Poly(Phenylene Oxide)/Liquid Crystalline Polymer

, , , , &

REFERENCES

  • Paul, D.R.; Barlow, J.W. A brief review of polymer blend technology. Adv. Chem. 1979, 176, 315–335.
  • Paul, D.R.; Newman, S. Polymer Blends, Academic Press: New York, 1978.
  • Utracki, L.A. Polymer Alloys and Blends. Hanser Publishers: Munich, Germany, 1989.
  • Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641.
  • Dutta, D.; Weiss, R.A. Liquid crystalline polymer/fluoropolymer blends: Preparation and properties of unidirectional “prepregs” and composite laminates. Polym. Compos. 1992, 13, 394–401.
  • Hay, A.S. Reflections on Polymerization by oxidative coupling. II. Oxidation of 2,6-disubstituted phenols. J. Polym. Sci. 1962, 58, 581.
  • Hay, A.S. Aromatic polyethers. Adv. Polym. Sci. 1967, 4, 496–527.
  • Hay, A.S.; Blanchard, H.S.; Endres, G.F.; Eustance, J.W. Polymerization by oxidative coupling. J. Amer. Chem. Soc. 1959, 81, 6335–6336.
  • Seppälä, J.; Henieo, M.; Kapanen, C. Injection-moulded blends of a thermotropic liquid crystalline polymer with polyethylene terephthalate, polypropylene, and polyphenylene sulfide. J. Appl. Polym. Sci. 1992, 44, 1051–1060.
  • Heino, M.T.; Seppälä, J.V. Studies on blends of a thermotropic liquid crystalline polymer and polybutylene terephthalate. Polym. Bull. 1993, 30, 353–360.
  • Sahoo, N.G.; Gupta, S.; Das, C.K.; Patra, P.K.; Tripathy, A.R.; Millns, W. Studies on pet/glass filled Lcp blends. Polym. Plast. Technol. Eng. 2002, 42, 471–483.
  • Rath, T.; Kumar, S.; Mahaling, R.N.; Mukherjee, M.; Das, C.K.; Pandey, K.N.; Saxena, A.K. Flexible composite of PEEK and liquid crystalline polymer in presence of polyphosphazene. J. Appl. Polym. Sci. 2007, 104, 3758–3765.
  • Wei, K.H.; Kiss, G. Liquid crystalline polymer blends with stabilized viscosity. Polym. Eng. Sci., 1996, 36, 713–720.
  • Jin, X.; Chung, T.-S. Thermal decomposition behavior of main-chain thermotropic liquid crystalline polymers, Vectra A-950, B-950, and Xydar SRT-900. J. Appl. Polym. Sci. 1999, 73, 2195–2207.
  • O’Donnell, H.J.; Baird, D.G. In situ reinforcement of polypropylene with liquid-crystalline polymers: Effect of maleic anhydride-grafted polypropylene. Polymer 1995, 36, 3113–3126.
  • Rath, T.; Kumar, S.; Mahaling, R.N.; Khatua, B.B.; Das, C.K.; Yadaw, S.B. Mechanical, morphological and thermal properties of in situ ternary composites based on poly(ether imide), silicone rubber and liquid crystalline polymer. Mater. Sci. Eng. A. 2008, 490, 198–207.
  • Seo, Y.; Kim, K.U. A study on the ternary blends of nylon 6, a thermotropic liquid crystalline polymer, and a thermoplastic elastomer. Polym. Eng. Sci. 1998, 38, 596–604.
  • Seo, Y. TLCP ternary blends for in situ composites: In situ compatibilizer. J. Appl. Polym. Sci. 1998, 70, 1589–1595.
  • Bose, S.; Das, C.K.; Saxena, A.K.; Ranjan, A. Compatibilizing effect of functionalized polyphosphazene on the properties of poly(phenylene oxide)/vectra a blend system. J. Appl. Polym. Sci. 2011, 119, 1914–1922.
  • Hatui, G.; Sahoo, S.; Das, C.K.; Saxena, A.K.; Basu, T.; Yue, C.Y. Effect of nanosilica and polyphosphazene elastomer on the in situ fibrillation of liquid crystalline polymer (LCP) and thermo-mechanical properties of polybutylene terephthalate (PBT)/LCP blend system. Mater. Des. 2012, 42, 184–191.
  • Chen, J.; Chen, P.; Wu, L.; Zhang, J.; He, J. Enhanced fibrillation of LCP by CaCO3 whisker in polysulfone matrix through increasing elongational stress. Polymer 2006, 47, 5402–5410.
  • Nayak, G.C.; Rajasekar, R.; Das, C.K. Effect of modified MWCNT on the properties of PPO/LCP blend. J. Mater. Sci. 2011, 46, 2050–2057.
  • Hatui, G.; Das, C.K. Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of polyether imide (PEI)/liquid crystalline polymer (LCP) blend system. J. Polym. Res. 2013, 20, 77.
  • Pal, P.; Kundu, M.K.; Malas, A.; Das, C.K. Thermo mechanical properties of organically modified halloysite nanotubes/cyclic olefin copolymer composite. Polym. Composit. 2014, 36, 955–960. doi:10.1002/pc.23016
  • Pal, P.; Kundu, M.K.; Malas, A.; Das, C.K. Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. J. Appl. Polym. Sci. 2013, 131(1), 31587–31593. doi:10.1002/APP.39587
  • Wei, K.-H.; Hwang, W.-J.; Tyan, H.-L. The mechanical properties of ternary liquid-crystalline polymer blends. Polymer 1996, 37, 2087–2094.
  • Margolis, J.M. Engineering Plastics Handbook, The McGraw-Hill: USA, 2006.
  • Datta, A.; Chen, H.H.; Baird, D.G. The effect of compatibilization on blends of polypropylene with a liquid-crystalline polymer. Polymer 1993, 34, 759–766.
  • Hang, L.; Tam, K.C.; Gan, L.H.; Yue, C.Y.; Lam, Y.C.; Hu, X. Effect of nanosilica filler on the rheological and morphological properties of polypropylene/liquid crystalline polymer blends. J. Appl. Polym. Sci. 2003, 87, 1484–1492.
  • Du, M.; Guo, B.; Jia, D. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Euro. Polym. J. 2006, 42, 1362–1369.
  • Rooj, S.; Das, A.; Thakur, V.; Mahaling, R.N.; Bhowmick, A.K.; Heinrich, G. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater. Des. 2010, 31, 2151–2156.
  • Pötschke, P.; Bhattacharyya, A.R.; Janke, A. Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 2003, 44, 8061–8069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.