1,160
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Role of Conducting Polymers in Enhancing TiO2-based Photocatalytic Dye Degradation: A Short Review

, &

REFERENCES

  • Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (1), 515–582.
  • Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
  • Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal., B 2004, 49 (1), 1–14.
  • Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95 (3), 735–758.
  • Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114 (19), 9919–9986.
  • Hashimoto, V.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 1989, 44, 8269–8280.
  • Kumar, S.G.; Devi, L.G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem., A. 2011, 115 (46), 13211–13241.
  • Sun, B.; Reddy, E.P.; Smirniotis. P.G. Visible light Cr (VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ. Sci. Technol. 2005, 39 (16), 6251–6259.
  • Paul, T.; Miller, P.L.; Strathmann, T.J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environ. Sci. Technol. 2007, 4 (13), 4720–4727.
  • Daimon, T.; Nosaka, Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. J. Phys. Chem., C 2007, 111 (11), 4420–4424.
  • Natarajan, T.S.; Natarajan, K.; Bajaj, T.S.; Tayade, R.J. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J. Nanopart. Res. 2013, 16, 1669–1710.
  • Liu, S.; Lim, M.; Fabris, R.; Chow, C.; Drikas, M.; Amal, R. TiO2 photocatalysis of natural organic matter in surface water: Impact on trihalomethane and haloacetic acid formation potential. Environ. Sci. Technol. 2008, 42 (16), 6218–6223.
  • Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.K. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano. Lett. 2006, 6 (2), 215–218.
  • Meichtry, J.M.; Lin, H.J.; Fuente, L.; Levy, I.K.; Gautier, E.A.; Blesa, M.A.; Litter, M.I. Low-cost TiO2 photocatalytic technology for water potabilization in plastic bottles for isolated regions photocatalyst fixation. J. Sol. Energy Eng. 2005, 129 (1), 119–126.
  • Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, D.Y.C. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 2007, 11 (3), 401–425.
  • Ohno, T., Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170.
  • Ohno, T.; Sarukawa, K.; Matsumura, M. Photocatalytic activities of pure rutile particles isolated from TiO2 powder by dissolving the anatase component in HF solution. J. Phys. Chem., B 2001, 105 (12), 2417–2420.
  • Yan, M.; Chen, F.; Zhang, J.; Anpo, M. Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem., B. 2005, 109 (18), 8673–8678.
  • Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93 (1), 341–357.
  • Su, C.; Hong, B.-Y.; Tseng, C.-M. Sol–gel preparation and photocatalysis of titanium dioxide. Catal. Today 2004, 9 (3), 119–126.
  • Pekakis, P.A.; Xekoukoulotakis, N.P.; Mantzavinos, D. Treatment of textile dye house wastewater by TiO2 photocatalysis. Water Res. 2006, 40 (6), 1276–1286.
  • Hoffmann, M.R.; Martin, S.T.; Choi, S.T.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.
  • Mills, A.; Hunte, S.L. An overview of semiconductor photcatalysis. J. Photochem. Photobiol., A 1995, 108 (1), 1–35.
  • Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90 (12), 1773–1787.
  • Marin, M.L.; Santos-Juanes, L.; Arques, A.; Amat, M.A.; Miranda, M.A. Organic photocatalysts for the oxidation of pollutants and model compounds. Chem. Rev. 2012, 112 (3), 1710–1750.
  • Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.; Takriff, M.S.; Sopian, K. Synthesis and catalytic activity of tio2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 2012, 7, 4871–4888.
  • Rodríguez, A.L.; Gallardo, P.S.; Rivera, M.Á.H.; Trejo, F.R.; Flores, L.L.D.; Romo, M.G.G. Photocatalytic degradation of methylene blue dye in aqueous solutions by photocatalytic oxidation SiO2–TiO2. Adv. Sci. Lett. 2012, 13 (1), 841–843.
  • Meng, Z.-D.; Zhu, L.; Choi, J.-G.; Chen, M-L.; Oh, W-C. Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light. J. Mater. Chem. 2011, 21, 7596–7603.
  • Chowdhury, P.; Moreira, J.; Goma, H.; Ray, A.K. Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: Parametric and kinetic study. Ind. Eng. Chem. Res. 2012, 51 (12), 4523–4532.
  • Li, W.; Li, D.; Meng, S.; Chen, W.; Fu, X.; Shao, Y. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 Nanocomposites. Environ. Sci. Technol. 2011, 45 (7), 2987–2993.
  • Colombo, A.; Cappelletti, G. Ardizzone, S.; Biraghi, I.; Bianchi, C.L.; Meroni, D.; Pirola, C.; Spadavecchia, F. Bisphenol A endocrine disruptor complete degradation using TiO2 photocatalysis with ozone. Environ. Chem. Lett. 2012, 10 (1), 55–60.
  • Tryba, B.; Piszcz, M.; Tsumura, T.; Toyoda, M.; Morawski, A.W. Activity of TiO2 Photocatalyst modified with H2WO4 for degradation of organic compounds in water. J. Adv. Oxid. Technol. 2012, 15 (1), 9–20.
  • Liu, Z.; Xu, X.; Fang, J.; Zhu, X.; Li, B. Synergistic Degradation of eosin Y by photocatalysis and electrocatalysis in UV irradiated solution containing hybrid BiOCl/TiO2 particles. Water, Air, & Soil Pollut. 2012, 223 (5), 2783–2798.
  • Lu, S.-Y.; Wu, D.; Wang, Q-L.; Yan, J.; Buekens, A.G.; Cen, K.-F. Photocatalytic decomposition on nano-TiO2: Destruction of chloroaromatic compounds. Chemosphere. 2011, 82 (9), 1215–1224.
  • Zong, X.; Wang, L. Ion-exchangeable semiconductor materials for visible light-induced photcatalysis. J. Photochem. Photobiol., C 2014, 18, 32–49.
  • Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201.
  • Zhang, X.; Shao, C.; Guo, Z.; Zhang, Z.; Mu, J.; Cao, T.; Liu, Y. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO2 nanofibers: Controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl. Mater. Interfaces. 2011, 3 (2), 369–377.
  • Wang, J.; Li, Y.; Wang, J.; Zhang, L.; Gao, J.Q.; Wang, B.X.; Yang, Q.; Fan, Q. The influence of Yb, B, and Ga-doped Er3+:Y3Al5O12 on solar light photocatalytic activity of TiO2 in degradation of organic dyes. Russ. J. Phy. Chem. 2014, 88 (1), 149–157.
  • Kim, H.-I.; Moon, G.-H.; Monllor-Satoca, D.; Park, Y.; Choi, W. Solar photoconversion using graphene/TiO2 composites: Nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet. J. Phys. Chem., C. 2012, 116 (12), 1535–1543.
  • Li, Y.; Wang, W.; Qiu, X.; Song, L.; Meyer, H.M.; Paranthaman, M.P.; Eres, G.; Zhang, Z.; Gu, B. Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2. Appl. Catal., B 2011, 110 (2), 148–153.
  • Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C 2005, 6 (2–3), 186–205.
  • Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.
  • Bingham, S.; Daoud, W.A. Recent advances in making nano-sized TiO2 visible-light active through rare-earth metal doping. J. Mater. Chem. 2011, 21, 2041–2050.
  • Zheng, J.B.; Li, G.; Ma, X.; Wang, Y.; Wu, G.; Cheng, Y. Polyaniline–TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies. Sens. Actuator, B 2008, 133, 374–380.
  • Li, X.; Wang, X.; Cheng, G.; Luo, Q.; An, J.; Wang, Y. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal., B. 2008, 81 (3–4), 267–273.
  • Riaz, U.; Sharif A.; Ashraf S.M. Pseudo template synthesis of poly(1- naphthylamine): effect of environment on nanostructured morphology. J. Nanopart. Res. 2008, 10 (7), 1209–1214.
  • Riaz, U.; Ashraf, S.M. Microwave-assisted solid state in situ polymerization and intercalation of poly(carbazole) between bentonite layers: Effect of microwaveirradiation and gallery confinement on the spectral, fluorescent, and morphological properties. Phys. Chem. C, 2012, 116 (22), 12366–12374.
  • Riaz, U.; Jahan, R.; Ahmad, S.; Ashraf, S.M. Copolymerization of poly(1-naphthylamine with aniline and o-toluidine. J. Appl. Polym. Sci., 2006, 108 (4), 2604–2610.
  • Riaz, U.; Ahmad, S.; Ashraf, S.M. Conducting composites of nanostructured Poly(naphthylamine) with poly(vinyl chloride). Polym. Comp. 2009, 30 (8), 528–533.
  • Riaz, U.; Ahmad, S.; Ashraf, S.M. Effect of solvent on the characteristics of nanostructured composites of poly(1-naphthylamine) with poly(vinyl alcohol) Curr. Appl. Phys. 2009, 9 (3), 581–587.
  • Riaz, U.; Ashraf, S.M. Semi-conducting poly(1-naphthylamine) nanotubes: A pH independent adsorbent of sulphonate dyes. Chem. Eng. J. 2011, 174 (2–3), 546–555.
  • Riaz, U.; Ashraf, S.M. Synergistic effect of microwave irradiation and conjugated polymeric catalyst in the facile degradation of dyes RSC Adv., 2014, 47153–47162.
  • Riaz, U.; Ashraf, S.M.; Farooq, M. Effect of pH on the microwave-assisted degradation of methyl orange using poly(1-naphthylamine) nanotubes in the absence of UV–visible radiation. Coll. Polym. Sci. 2014, 293, 1035–1042.
  • Riaz, U.; Ashraf, S.M. Latent photocatalytic behavior of semi-conducting poly(1 naphthylamine) nanotubes in the degradation of Comassie Brilliant Blue RG250. Sep. Purif. Technol. 2012, 95 (10), 97–102.
  • Riaz, U.; Ashraf, S.M. Microwave-induced catalytic degradation of a textile dye using bentonite–poly(o-toluidine) nanohybrid. RSC Adv., 2015. 5, 3276–3285.
  • Riaz, U.; Ashraf, S.M.; Aqib, M. Microwave-assisted degradation of acid orange using a conjugated polymer, polyaniline, as catalyst. Arab. J. Chem., 2014, 7 (1), 79–86.
  • Kumar, R.V., Diamant, Y.; Gedanken, A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 2000, 12, 2301–2305.
  • Wang, F.; Min, S.X. TiO2/polyaniline composites: An efficient photocatalyst for the degradation of methylene blue under natural light. Chin. Chem. Lett. 2007, 8, 1273–1277.
  • Wang, F.; Min, S.; Han, Y.; Feng, L. Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite Photocatalysts. Superlattices Microstruct. 2010, 48, 170–180.
  • Salem, M.A.; Al-Ghonemiy, A.F.; Zaki, A.B. Photocatalytic degradation of Allura red and Quinoline yellow with polyaniline/TiO2 Nano composite. Appl. Catal. B., 2009, 91, 59–66.
  • Yu, Q.-Z.; Wang, M.; Chen, H.-Z.; Dai, Z. Polyaniline nanowires on TiO2 nano/microfiber hierarchical nano/microstructures: Preparation and their photocatalytic properties. Mater. Chem. Phy. 2011, 129, 666–672.
  • Li, J.; Zhu, L.; Wu, Y.; Harima, Y.; Zhang, A.; Tang, H. Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization. Polymer 2006, 47, 7361–7367.
  • Min, S.X.; Wang, F.; Zhang, Z.M.; Han, Y.Q.; Feng, L. Preparation and photocatalytic activity of PANI/AMTES-TiO2 nanocomposite materials. Acta Phys. Chim. Sin. 2009, 25 (7), 1303–1310.
  • Olad, A.; Behboudi, S.; Entezami, A.A. Preparation, characterization and photocatalytic activity of TiO2/polyaniline core–shell nano composite. Bull. Mater. Sci. 2012, 35, 801–809.
  • Gu, L.; Wang, J.; Qi, R.; Wang, X.; Xu, P.; Han, X. A novel incorporating style of polyaniline/TiO2 composites as effective visible photocatalysts. J. Mol. Catal., A 2012, 357, 19–25.
  • Radoičić, M.; Šaponjić, Z.; Janković, I.A.; Ćirić-Marjanović, G.; Ahrenkielc, S.P.; Čomora, M.I. Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl. Catal., B 2013, 136–137, 133–139.
  • Li, Y.; Yu, Y.; Wu, L.; Zhi, J. Processable polyaniline/titania nanocomposites with good photocatalytic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach. Appl. Surf. Sci. 2013, 273, 135–143.
  • Cheng, Y.; An, L.; Gao, F.; Wang, G.; Li, X.; Chen, X. Simplified synthesis of polyaniline–TiO2 composite nanotubes for removal of azo dyes in aqueous solution. Res. Chem. Intermed. 2013, 39, 3969–3979.
  • Cheng, Y.; An, L.; Zhao, Z.; Wang, G. Preparation of polyaniline/TiO2 composite nanotubes for photodegradation of AZO dyes. J. Wuhan Univ. Technol., Mater. Sci. 2014, 29 (3), 469–470.
  • Jeong, W.-H.; Amna, T.; Ha, Y.-M.; Hassan, M.S.; Kim, H.-C.; Khil, M.-S. Novel PANI nanotube@TiO2 composite as efficient chemical and biological disinfectant. Chem. Engg. J. 2014, 246, 204–210.
  • Subramanian, E.; Subbulakshmi, S.; Murugan, C. Inter-relationship between nanostructures of conducting polyaniline and the photocatalytic methylene blue dye degradation efficiencies of its hybrid composites with anatase TiO2. Mater. Res. Bull. 2014, 51, 128–135.
  • Ahmad, R.; Mondal, P.K. Adsorption and photodegradation of methylene blue by using PAni/TiO2 Nano composite. J. Dispersion Sci. Technol. 2012, 33, 380–386.
  • Liu, Z.; Miao, Y.-E.; Liu, M.; Ding, Q.; Tjiu, W.W.; Cui, X.; Liu, T. Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J. Colloid Interface Sci. 2014, 424, 49–55.
  • Lin, Y.; Li, D.; Hu, J.; Xiao, G.; Wang, J., Li, W.; Fu, X. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J. Phys. Chem., C 2012, 116, 5764–5772.
  • Leng, C.; Wei, J.; Liu, Z.; Xiong, R.; Pan, C.; Shi, J. Facile synthesis of PANI-modified CoFe2O4–TiO2 hierarchical flower-like nano architectures with high photocatalytic activity. J. Nanopart. Res. 2013, 15, 1643–1645.
  • Shaheen, S.E.; Brabec, C.J.; Sariciftci, N.S.; Padinger, F.; Fromherz, T.; Hummelen, J.C. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 2001, 78, 841–843.
  • Zhang, Z.; Yuan, Y.; Liang, L.; Cheng, Y.; Xu, H.; Shi, G.; Jin, L. Preparation and photoelectrochemical properties of a hybrid electrode composed of polypyrrole encapsulated in highly ordered titanium dioxide nanotube array. Thin Solid Films 2008, 516, 8663–8667.
  • Thiéblemont, J.C.; Brun, A.; Marty, J.; Planche, M.F.; Calo, P. Thermal analysis of polypyrrole oxidation in air. Polymer 1995, 36, 1605–1610.
  • Alumaa, A.; Hallik, A.; Sammelselg, V.; Tamm, J. On the improvement of stability of polypyrrole films in aqueous solutions. Synth. Met. 2007, 157, 485–491.
  • Karim, M.R.; Lim, K.T.; Lee, C.J.; Bhuiyan, M.T.I.; Kim, H.J.; Park, L.-S.; Lee, M.S. Synthesis of core-shell silver–polyaniline nanocomposites by gamma radiolysis method. J. Polym. Sci., A 2007, 45, 5741–5747.
  • Karim, M.R.; Lee, H.W.; Cheong, I.W.; Park, S.M.; Oh, W.; Yeum, J.H. Conducting polyaniline–titanium dioxide nanocomposites prepared by inverted emulsion polymerization. Polym Compos. 2010, 31, 83–88.
  • Chowdhury, D.; Paul, A.; Chattopadhyay, A. Photocatalytic polypyrrole–TiO2-nanoparticles composite thin film generated at the air-water interface. Langmuir 2005, 21, 4123–4128.
  • Wang, D.; Wang, Y.; Li, X.; Luo, Q.; An, J.; Yue, J. Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method. Catal. Commun. 2008, 9, 1162–1166.
  • Li, X.; Wang, D.; Luo, Q.; An, J.; Wang, Y.; Cheng, G. Surface modification of titanium dioxide nanoparticles by polyaniline via an in situ method. J. Chem. Technol. Biotechnol. 2008, 83 (11), 1558–1564.
  • He, M.Q.; Bao, L.L.; Sun, K.Y.; Zhao, D.X.; Li, W.B.; Xia, J.X.; Li, H.M. Synthesis of molecularly imprinted polypyrrole/titanium dioxide nanocomposites and its selective photocatalytic degradation of rhodamine B under visible light irradiation. Express Polym. Lett. 2014, 8 (11), 850–861.
  • Zhang, C.; Li, Q.; Li, J. Synthesis and characterization of polypyrrole/TiO2 composite by insitu polymerization method. Synth. Met. 2010, 160, 1699–1703.
  • Makeiff, D.A.; Trisha Huber, T. Microwave absorption by polyaniline–carbon nanotube composites. Synth. Met. 2006, 156, 497–505.
  • Phang, S.W.; Daik, R.; Abdullah, M.H. Poly(4,4′-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer. Thin Solid Films 2005, 477, 125–130.
  • Deng, F.; Li, Y.; Luo, X.; Yang, L.; Tu, X. Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloid. Surf., A 2012, 395, 183–189.
  • Wang, B.; Li, C.; Pang, J.; Qing, X.; Zhaia, J.; Li, Q. Novel polypyrrole-sensitized hollow TiO2/fly ash cenospheres: Synthesis, characterization, and photocatalytic ability under visible light. Appl. Surf. Sci. 2012, 258, 9989–9996.
  • Mrowetz, M.; Balcerski, W.; Colussi, A.J.; Hoffmann, M.R. Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J. Phys. Chem., B 2004, 108, 17269–17273.
  • Wang, B.; Li, Q.; Wang, W.; Li, Y.; Zhai, J.P. Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl. Surf. Sci. 2011, 257, 3473–3479.
  • Li, Y.; Wang, W.; Li, Q.; Zhai, J.P. Study on preparation and photocatalytic activity of fly ash cenosphere-supported TiO2. Fly Ash Comprehensive Utilization (China) 2009, 6, 22–26.
  • Li, X.; Jiang, G.; He, G.; Zheng, W.; Tan, Y.; Xiao, W. Preparation of porous PPyATiO2 composites: Improved visible light photoactivity and the mechanism. Chem. Engg. J. 2014, 236, 480–489.
  • Kachina, A.; Puzenat, E.; Ould-Chikh, S.; Geantet, C.; Delichere, P.; Afanasiev, P. A new approach to the preparation of nitrogen-doped titania visible light photo catalyst. Chem. Mater. 2012, 24, 636–642.
  • Hoang, S.; Berglund, S.P.; Hahn, N.T.; Bard, A.J.; Mullins, C.B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 2012, 134, 3659–3662.
  • Perera, V.P.S.; Pitigala, P.K.D.D.P.; Jayaweera, P.V.V.; Bandaranayake, K.M.P.; Tennakone, K. Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures. J. Phys. Chem., B 2003, 107, 13758–13761.
  • Kandiel, T.A.; Dillert, R.; Bahnemann, D.W. Enhanced photocatalytic production of molecular hydrogen on TiO2 modified with Pt–polypyrrole nanocomposites. Photochem. Photobiol. Sci. 2009, 8, 683–690.
  • Zhu, Y.; Xu, S.; Jiang, L.; Pan, K.; Dan, Y. Synthesis and characterization of polythiophene/titanium dioxide composites. React. Funct. Polym. 2008, 68, 1492–1498.
  • Zhu, Y.; Dan, Y. Photocatalytic activity of poly(3-hexylthiophene)/titanium dioxide composites for degrading methyl orange. Sol. Energy. Mater. Sol. Cell 2010, 94, 1658–1664.
  • Zhu, Y.; Xu, S.; Yi, D. Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React. Funct. Polym. 2010, 70, 282–287.
  • Wang, Y.; Zhang, J.; Luo, Q.; Li, X.; Duana, Y.; An, J. Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light. J. Hazard. Mater. 2009, 169, 546–550.
  • Zhang, H.; Zong, R.L.; Zhao, J.A.; Zhu, Y.F. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 2008, 42 (10), 3803–3807.
  • Koster, L.J.A.; Mihailetchi, V.D.; Blom, P.W.M. Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 2006, 88, 093511–093515.
  • Liao, G.; Chen, S.; Quan, X.; Chen, H.; Zhang, Y. Photonic crystal coupled TiO2/polymer hybrid for efficient photocatalysis under visible light irradiation. Environ. Sci. Technol. 2010, 44 (9), 3481–3485.
  • Xu, S.; Jiang, L.; Yang, H.; Song, Y.; Dan, Y. Structure and photocatalytic activity of polythiophene/TiO2 composite particles prepared by photoinduced polymerization. Chin. J. Catal. 2011, 32 (4), 536–545.
  • Liu, P.; Zhang, P.; Cao, D.L.; Xue, W.T. Preparation, characterization and photodegradation of methylene blue based on TiO2 microparticles modified with thiophene substituents. Chin. Sci. Bull. 2012, 57 (33), 4381–4386.
  • Khalfaoui-Boutoumi, N.; Boutoumi, H.; Khalaf, H.; David, B. Synthesis and characterization of TiO2–montmorillonite/polythiophene-SDS nanocomposites: Application in the sonophotocatalytic degradation of rhodamine 6 G. Appl. Clay. Sci. 2013, 80–81, 56–62.
  • Zhu, Y.; Xu, S.; Jiang, L.; Pan, K.; Dan, Y. Synthesis and characterization of polythiophene/titanium dioxide composites. React. Funct. Polym. 2008, 68, 1492–1498.
  • Zhu, Y.; Xu, S.; Yi, D. Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. React. Funct. Polym. 2010, 70, 282–287.
  • Ameen, S.; Akhtar, M.S.; Kim, Y.S.; Shin, H.S. Nanocomposites of poly(1-naphthylamine)/SiO2 and poly(1-naphthylamine)/TiO2: Comparative photocatalytic activity evaluation towards methylene blue dye. Appl. Catalysis, B 2011, 103, 136–142.
  • Muthirulan, P., Devi, C.K.N.; Sundaram, M.M. Facile synthesis of novel hierarchical TiO2 @Poly(o-phenylenediamine) core–shell structures with enhanced photocatalytic performance under solar light. Journal of Environ. Chem. Engg. 2013, 1, 620–627.
  • Liao, G.; Chen, S.; Quan, X.; Zhang, Y.; Zhao, H. Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl. Catal., B 2001, 102, 126–131.
  • Seoudi, R.; Shabaka, A.A.; Kamal, M.; Abdelrazek, E.M.; Eisa, W.H. Dependence of structural, vibrational spectroscopy and optical properties on the particle sizes of CdS/polyaniline core/shell nanocomposites. J. Mol. Str. 2012, 1013, 156–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.