1,083
Views
56
CrossRef citations to date
0
Altmetric
Reviews

A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties

, , , &

REFERENCES

  • Dementjev, A.P.; Maslakov, K.I. Chemical state of carbon atoms on a nanodiamond surface: Growth mechanism of detonation nanodiamond. Fulleren. Nanotub. Carbon Nanostruct. 2012, 20, 594–599.
  • Rao, C.N.R.; Biswas, K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene, the new nanocarbons. J. Mater. Chem. 2009, 19, 2457–2469.
  • Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Blau, W.J. Morphological and mechanical properties of carbon-nanotube-reinforced semi crystalline and amorphous polymer composites. Appl. Phys. Lett. 2002, 81, 5123–5125.
  • Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A.; Prud’Homme, R.K.; Brinson, L.C. Functionalized graphene sheets for polymer nanocomposites. Nat. Immunol. 2008, 3, 327–331.
  • Behler, K.D.; Stravato, A.; Mochalin, V.; Korneva, G.; Yushin, G.; Gogotsi, Y. Nanodiamond-polym composite fibers and coatings. ACS Nano 2009, 3, 363–369.
  • Rao, C.N.R.; Satishkumar, B.C.; Govindaraj, A.; Nath, M. Nanotubes. Chem. Phys. Chem, 2001, 2, 78–105.
  • Calvert, P. Nanotube composites: A recipe for strength. Nature 1999, 399, 210–211.
  • Barrera, E.V. Key methods for developing single-wall nanotube composites. JOM 2000, 52, 38–42.
  • Osawa, E. Single-nano buckydiamond particles: Synthesis strategies, characterization methodologies and emerging applications. In: Ho, D. ed. Nanodiamond-applications in biology and nanoscale medicine, 2010, New York, Springer, Chapter 1, pp. 1–33.
  • Chang, I.P.; Hwang, K.C.; Chiang, C.-S. Preparation of fluorescent magnetic nanodiamond and cellular imaging. J. J. Am. Chem. Soc. 2008, 130, 15476–15481.
  • Chao, J.-I.; Perevedentseva, E.; Chung, P.-H.; Liu, K.-K.; Cheng, C.-Y.; Chang, C.-C.; Cheng, C.-L. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 2007, 93, 2199–2208.
  • Tsubota, T.; Hirabayashi, O.; Ida, S.; Nagaoka, S.; Nagata, M.; Matsumoto, Y. Chemical modification of hydrogenated surface using benzoyl peroxides. Phys. Chem. Chem. Phy. 2002, 4, 806–811.
  • Ando, T.; Nishitani-Gamo, M.; Rawles, R.E.; Yamamoto, K.; Kamo, M.; Sato, Y. Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state. Diamond Relat. Mater. 1996, 5, 1136–1142.
  • Krueger, A.; Boedeker, T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diamond Relat. Mater. 2008, 17, 1367–1370.
  • Tsubota, T.; Tanii, S.; Ida, S.; Nagata, M.; Matsumoto, Y.; Chemical modification of diamond surface with various carboxylic acids by radical reaction in liquid phase. Diamond Relat. Mater. 2004, 13, 1093–1097.
  • Momen, G.; Farzaneh, M. Survey of micro/nano filler use to improve silicon rubber for outdoor insulators. Rev. Adv. Mater. Sci. 2011, 27, 1–13.
  • Shenderova, O.A.; McGuire, G. Ultrananocrystalline diamond: Synthesis, properties and applications. In Y. Gogotsi, ed., Nanomaterials Handbook, CRC Press: New York, 2006, Chapter 7, pp. 203–237.
  • Gogotsi, Y. and Presser, V. (Eds.). Carbon Nanomaterials, CRC Press: New York, 2006, pp. 326.
  • CastroNeto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Modern Phys. 2009, 81, 109–162.
  • Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
  • Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
  • Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; Nguyen, S.T.; Aksay, I.A.; Prud’homme, R.K.; Brinson, L.C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.
  • Krueger, A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chem. Eur. J. 2008, 14, 1382–1390.
  • Baidakova, M.; Vul, A. New prospects and frontiers of nanodiamond clusters. J. Phys D: Appl Phys. 2007, 40, 6300–6311.
  • Koshcheev, A.P. Thermodesorption mass spectrometry in the light of solution of the problem of certification and unification of the surface properties of detonation nanodiamonds. Russ. J. Gen. Chem. 2009, 79, 2033–2044.
  • Zou, Q.; Li, Y.G.; Zou, L.H.; Wang, M.Z. Characterization of structures and surface states of the nanodiamond synthesized by detonation. Mater. Charact. 2009, 60, 1257–1262.
  • Attia, N.F.; Rao, J.P.; Geckeler, K.E. Nanodiamond–polymer nanoparticle composites and their thin films. J. Nanopart. Res. 2014, 16, 2361–2365.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
  • Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A.G.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061.
  • Salvetat, J.-P.; Briggs, G.; Bonard, J.-M.; Bacsa, R.; Kulik, A.; Stöckli, T.; Burnham, N.; Forró, L. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 1999, 82, 944–947.
  • Thostenson, E.T.; Chou, T.-W. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44, 3022–3029.
  • Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205.
  • Thostenson, E.T.; Ren, Z.F.; Chou, T.W. Advances in the science and technology of CNTs and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes, Imperial College Press: London, 1998.
  • Dresselhaus, M.S.; Dresselhaus, G.; Saito, R. Electronic structure of graphene tubules based on C60. Phys. Rev. B 1992, 45, 6234.
  • Bethune, D.S.; Kiang, C.H.; de Vries, M.S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605–607.
  • Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.
  • Rinzler, A.G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C.B.; Rodriguez-acias, F.J.; Boul, P.J.; Lu, A.H.; Heymann, D.; Colbert, D.T.; Lee, R.S.; Fischer, J.E.; Rao, A.M.; Eklund, P.C.; Smalley, R.E. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. J. Appl. Phys. A Mater. Sci. Process. 1998, 67, 29–37.
  • Ren, Z.F.; Huang, Z.P.; Wang, D.Z.; Wen, J.G.; Xu, J.W.; Calvet, L.E.; Chen, J.; Klemic, J.F.; Reed, M.A. Wang, J.H. Growth of a single free standing multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 1999, 75, 1086–1088.
  • Nikolaev, P.; Bronikowski, M.J.; Bradley, R.K.; Fohmund, F.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91–97.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Smalley, R. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.
  • Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; Rodriguez-Macias, F.; Shon, Y.-S.; Lee, T.R.; Colbert, D.T.; Smalley, R.E. Fullerene pipes. Science 1998, 280, 1253–1256.
  • Park, Y.S.; Kim, K.S.; Jeong, H.J.; Kim, W.S.; Moon, J.M.; An, K.H.; Bae, D.J.; Lee, Y.S.; Park, G.S.; Lee, Y.H. Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synth. Met. 2002, 126, 245–251.
  • Bacsa, R.R.; Laurent, Ch.; Peigney, A.; Bacsa, W.S.; Vaugien, Th.; Rousset, A. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chem. Phys. Lett. 2000, 323, 566–571.
  • Dai, H. Nanotube growth and characterization. Top. Appl. Phys. 2001, 80, 29–53.
  • Chen, M.; Chen, C.M.; Chen, C.F. Preparation of high yield multi walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J. Mat. Sci. 2002, 37, 3561–3567.
  • Mo, Y.H.; Kibria, A.K.M.F.; Nahm, K.S. The growth mechanism of carbon nanotubes from thermal cracking of acetylene over nickel catalyst supported on alumina. Synth. Met. 2001, 122, 443–447.
  • Hou, H.; Schaper, A.K.; Jun, Z.; Weller, F.; Greiner, A. Large-scale synthesis of aligned carbon nanotubes using FeCl3 as floating catalyst precursor. Chem. Mater. 2003, 15, 580–585.
  • Wang, X.; Lu, J.; Xie, Y.; Du, G.; Guo, Q.; Zhang, S. A novel route to multi walled carbon nanotubes and carbon nanorods at low temprature. J. Phys. Chem. B 2002, 106, 933–937.
  • O’Loughlin, J.L.; Kiang, C.-H.; Wallace, C.H.; Reynolds, T.K.; Rao, L.; Kaner, R.B. Rapid synthesis of carbon nanotubes by solid-state metathesis reactions. J. Phys. Chem. B 2001, 105, 1921–1924.
  • Chiang, I.W.; Brinson, B.E.; Smalley, R.E.; Margrave, J.L.; Hauge, R.H. Purification and characterization of single-wall carbon nanotubes. J. Phys. Chem. B 2001, 105, 1157–1161.
  • Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F. Complete elimination of metal catalysts from single wall carbon nanotubes. Carbon 2002, 40, 985–988.
  • Niyogi, S.; Hu, H.; Hamon, M.A.; Bhowmik, P.; Zhao, B.; Rozenzhak, S.M.; Chen, J.; Itkis, M.E.; Meier, M.S.; Haddon, R.C. Chromatographic purification and properties of soluble single-walled carbon nanotubes. J. Am. Chem. Soc. 2001, 123, 733–734.
  • Shelimov, K.B.; Esenaliev, R.O.; Rinzler, A.G.; Huffman, C.B.; Smalley, R.E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 1998, 282, 429–434.
  • Thiên-Nga, L.; Hernadi, K.; Ljubović, E.; Garaj, S.; Forró, L. Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett. 2002, 2, 1349–1352.
  • Doorn, S.K.; Fields, III, R.E.; Hu, H.; Hamon, M.A.; Haddon, R.C.; Selegue, J.P.; Majidi, V. High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 3169–3174.
  • Duesberg, G.S.; Roth, S.; Downes, P.; Minett, A.; Graupner, R.; Ley, L.; Nicoloso, N. Modification of single-walled carbon nanotubes by hydrothermal treatment. Chem. Mater. 2003, 15, 3314–3319.
  • Jin, J.H.; Jeong, S.Y.; Shin, Y.M.; Han, J.H.; Lim, S.C.; Eum, S.J.; Yang, C.W.; Kim, N.; Park, C.-Y.; Lee, Y.H. Dual-catalyst growth of vertically aligned carbon nanotubes at low temperature in thermal chemical vapor deposition. Chem. Phys. Lett. 2002, 361, 189–195.
  • Zhang, Q.; Yoon, S.F.; Ahn, J.; Gan, B.; Rusli; Yu, M.-B. Carbon films with high density nanotubes produced using microwave plasma assisted CVD. J. Phys. Chem. Solids 2000, 61, 1179–1183.
  • Choi, Y.C.; Bae, D.J.; Lee, Y.H.; Lee, B.S.; Han, I.T.; Choi, W.B.; Lee, N.S.; Kim, J.M. Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synth. Met. 2000, 108, 159–163.
  • Yokomichi, H.; Sakai, F.; Ichihara, M.; kishimoto, N. Attempt to synthesize carbon nanotubes by hot-wire chemical vapor deposition. Thin Solid Films 2001, 395, 253–256.
  • Wang, X.; Hu, Q.; Chen, Xin.; Chin, Y. Preparation of carbon nanotubes and nanoparticles by microwave plasma-enhanced chemical vapor deposition. Sci. Mater. 2001, 44, 1567–1570.
  • Chung, S.J.; Hoon, S.; Jang, L.J. Field emission from carbon nanotubes grown by layer-by-layer deposition method using plasma chemical vapor deposition. Thin Solid Films 2001, 383, 73–77.
  • Li, Z.; Chen, J.; Zhang, X.; Li, Y.; Fung, K.K. Catalytic synthesized carbon nanostructures from methane using nanocrystalline Ni. Carbon 2002, 40, 409–415.
  • Zhang, W.D.; Wen, Y.; Liu, S.M.; Tjiu, W.C.; Xu, G.Q.; Gan, L.M. Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon. 2002, 40, 1981–1989.
  • Service, R.F. Super strong nanotubes show they are smart, too. Science 1998, 281, 940–942.
  • Callister, W.D. Materials Science and Engineering 6th Edition, An Introduction, Wiley: New York, 2003.
  • Tibbetts, G.G.; Beetz, C.P. Mechanical-properties of vapor-grown carbon-fibers. J. Phys. D Appl. Phys. 1987, 20, 292–297.
  • Wang, X.; Liu, Y.; Yu, G.; Xu, C.; Zhang, J.; Zhu, D. Anisotropic electrical transport properties of aligned carbon nanotube films. J. Phys. Chem. B 2001, 105, 9422–9425.
  • Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes–the route toward applications. Science 2002, 297, 787–792.
  • Poncharal, P.; Berger, C.; Yi, Y.; Wang, Z.L.; de Heer, W.A. Room temperature ballistic conduction in carbon nanotubes. J. Phys. Chem. B 2002, 106, 12104–12118.
  • Ajayan, P.M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799.
  • Duclaux, L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon 2002, 40, 1751–1764.
  • Lee, R.S.; Kim, H.J.; Fischer, J.E.; Thess, A.; Smalley, R.E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997, 388, 255–257.
  • Hone, J.; Llaguno, M.C.; Nemes, N.M.; Johnson, A.T.; Fischer, J.E.; Walters, D.A.; Casavant, M.J.; Schmidt, J.; Smalley, R.E. Electrically and thermal transport properties of magnetically aligned single walled carbon nanotubes. Appl. Phys. Lett. 2000, 77, 666–668.
  • Fujiwara, M.; Oki, E.; Hamada, M.; Tanimoto, Y.; Mukouda, I.; Shimomura, Y. Magnetic orientation and magnetic properties of a single carbon nanotube. J. Phys. Chem. A 2001, 105, 4383–4386.
  • Overney, G.; Zhong, W.; Tomanek, D. Structural rigidity and low frequency vibrational modes of long carbon tubules. Z Phys. D At. Mol. Clusters 1993, 27, 93–96.
  • Lu, J.P. Elastic properties of single and multilayered nanotubes. J. Phys. Chem. Solid 1997, 58, 1649–1652.
  • Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.
  • Poncharal, P.; Wang, Z.L.; Ugarte, D.; de Heer, W.A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516.
  • Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975.
  • Yu, M.; Lourie, O.; Dyer, M.J.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science 2000, 287, 637–640.
  • Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.
  • Mintmire, J.W.; Dunlap, B.I.; White, C.T. Are fullerene tubes metallic. Phys. Rev. Lett. 1992, 68, 631–634.
  • Delaney, P.; Choi, H.J.; Ihm, J.; Louie, S.G.; Cohen, M.L. Broken symmetry and pseudo gaps in ropes of carbon nanotubes. Phys. Rev. B. 1999, 60, 7899–7904.
  • Kwon, Y.-K.; Tománek, D. Electronic and structural properties of multiwall carbon nanotubes. Phys. Rev. B. 1998, 58, R16001–R16004.
  • Reich, S.; Thomsen, C.; Ordejón, P. Electronic band structure of isolated and bundled carbon nanotubes. Phys. Rev. B 2002, 65, 155–411.
  • Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Metals. 1999, 103, 2555–2558.
  • Kazaoui, S.; Minami, N.; Jacquemin, R.; Kataura, H.; Achiba, Y. Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy. Phys. Rev. B 1999, 60, 13339–13342.
  • Hwang, J.; Gommans, H.H.; Ugawa, A.; Tashiro, H.; Haggenmueller, R.; Winey, K.I.; Fischer, J.E.; Tanner, D.B.; Rinzler, A.G. Polarized spectroscopy of aligned single-wall carbon nanotubes. Phys. Rev. B 2000, 62, R13310–R13313.
  • Liu, X.; Pichler, T.; Knupfer, M.; Golden, M.S.; Fink, J.; Kataura, H.; Achiba, Y. Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response. Phys. Rev. B 2002, 66, 45411.
  • Decarli, P.S.; Jamieson, J.C. Formation of diamond by explosive shock. Science 1961, 133, 1821–1822.
  • Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007, 7, 3305–3314.
  • Kong, X.; Huang, L.C.; Liau, S.-C.; Han, C.-C.; Chang, H.-C. Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Anal. Chem. 2005, 77, 4273–4277.
  • Bondar, V.S.; Pozdnyakova, I.O.; Puzyr, A.P. Applications of nanodiamonds for separation and purification of proteins. Phys. Solid. State 2004, 46, 758–760.
  • Puzyr, A.P.; Purtov, K.V.; Shenderova, O.A.; Luo, M.; Brenner, D.W.; Bondar, V.S. The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Doklady Biochem. Biophys. 2007, 417, 299–301.
  • Schwertfeger, H.; Fokin, A.A.; Schreiner, P.R. Diamonds are a chemist’s best friends: Diamondoid chemistry beyond adamantine. Chem. Int. Ed. 2008, 47, 1022–1036.
  • Dahl, J.E.; Liu, S.G.; Carlson, R.M.K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 2003, 299, 96–99.
  • Freitas, R.A. Biocompatibility, Nanomedicine, Vol. IIA, Landes Bioscience: Austin, TX, 2003.
  • Vereschagin, A.L. Detonation Nanodiamonds, Altai State Technical University: Barnaul, Russian Federation, 2001, (in Russian).
  • Dolmatov, V.Y. Detonation synthesis ultra dispersed diamonds: Properties and applications. Russ. Chem. Rev. 2001, 70, 607–626.
  • Viecelli, J.A.; Ree, F.H. Carbon particle phase transformation kinetics in detonation waves. J. Appl. Phys. 2000, 88, 683–690.
  • Shenderova, O.A.; Zhirnov, V.V.; Brenner, D.W. Carbob nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27, 227–356.
  • Donnet, J.B.; Lemoigne, C.; Wang, T.K.; Peng, C.M.; Samirant, M.; Eckhardt, A. Detonation and shock synthesis of nanodiamonds. Bull. Soc. Chim. Fr. 1997, 134, 875–890.
  • Holt, K.B. Diamond at the nanoscale: Applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos. Trnas. R Soc. London Ser. A 2007, 365, 2845–2861.
  • Boudou, J.-P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 2009, 20, 235602.
  • Davies, G.; Lawson, S.C.; Collins, A.T.; Mainwood, A.; Sharp, S.J. Vacancy-related centers in diamond. Phys. Rev. B Condens. Mat. 1992, 46, 13157–13170.
  • Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K. Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007, 104, 727–732.
  • Gracio, J.J.; Fan, Q.H.; Madaleno, J.C. Diamond growth by chemical vapour deposition. J. Phys. D Appl. Phys. 2010, 43, 374017.
  • Philip, J.; Hess, P.; Feygelson, T.; Butler, J.E.; Chattopadhyay, S.; Chen, K.H.; Chen, L.C. Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J. Appl. Phys. 2003, 93, 2164–2171.
  • Qin, L.C.; Zhou, D.; Krauss, A.R.; Gruen, D.M. TEM characterization of nanodiamond thin films. Nanostruct. Mater. 1998, 10, 649–660.
  • Butler, J.E.; Sumant, A.V. The CVD of nanodiamond materials. Chem. Vap. Depos. 2008, 14, 145–160.
  • Bajaj, P.; Akin, D.; Gupta, A.; Sherman, D.; Shi, B.; Auciello, O.; Bashir, R. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomed. Microdevices 2007, 9, 787–794.
  • Shi, B.; Jin, Q.; Chen, L.; Auciello, O. Fundamentals of ultrananocrystalline diamond (UNCD) thin films as biomaterials for developmental biology: Embryonic fibroblasts growth on the surface of (UNCD) films. Diam. Relat. Mater. 2009, 18, 596–600.
  • Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V. Onion like carbon from ulta dispersed diamond. Chem. Phys. Lett. 1994, 209, 72.
  • Vereschagin, Enhanced chemical vapor deposition of diamond and related materials. United States Patent 1996, 5, 861, 349.
  • Loktev, V.F.; Makalskii, V.I.; Stoyanova, I.V. Surface modification of ultra dispersed diamonds. Carbon 1991, 29, 817–1063.
  • Ando, T.; Nishitani-Gamo, M.; Rawles, R.E.; Yamamoto, K.; Kamo, M.; Sato, Y. Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state. Diam. Relat. Mater. 1996, 5, 1136–1142.
  • Liu, Y.; Gu, Z.; Margrave, J.L.; Khabashesku, V.N. Functionalization of Nanoscale Diamond powder: Fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 2004, 16, 3924–3930.
  • Kulakova, I.I. Surface chemistry of nanodiamonds. Phys. Solid State 2004, 46, 636–643.
  • Lisichkin, G.V.; Korolkov, Tarasevich, B.N.; Kulakova, I.I.; Karpukhin, A.V. Photochemical chlorination of nanodiamond and interaction of its modified surface with C nucleophiles. Russ. Chem. Bull. 2006, 55, 2212–2219.
  • Krueger, A.; Liang, Y.; Jarre, G.; Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 2006, 16, 2322–2328.
  • Li, L.; Van Der, A.E.; Davidson, J.L.; Lukehart, C.M. Nanodiamond/polymer brushes: Synthesis, characterization and application. Abstr. Papers Am. Chem. Soc. 2006, 231.
  • Krueger, A. The structure and reactivity of nanoscale diamond. J. Mater. Chem. 2008, 18, 1485–1492.
  • Matsumoto, S.; Matsui, Y. Electron microscopic observation of diamond particles grown from the vapour phase. J. Mater. Sci. 1983, 18, 1785–1791.
  • Barnard, A.S.; Russo, S.P.; Snook, I.K. Ab initio modelling of the stability of nanocrystalline diamond morphologies. Philos. Mag. Lett. 2003, 83, 39–45.
  • Kern, G.; Hafner, J. Ab-initio calculations of the atomic and electronic-structure of clean and hydrogenated diamond (110) surfaces. Phys. Rev. B 1997, 56, 4203–4210.
  • Chang, Y.-R.; Lee, H.-Y.; Chen, K.; Chang, C.-C.; Tsai, D.-S.; Fu, C.-C.; Lim, T.-S.; Tzeng, Y.-K.; Fang, C.-Y.; Han, C.-C.; Chang, H.-C.; Fann, W. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 2008, 3, 284–288.
  • Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Sawa, E.; Hussain, S.M.; Dai, L. Are diamond nanoparticles cytotoxic. J. Phys. Chem. B 2007, 111, 2–7.
  • Dolmatov, V.Y. Application of detonation nanodiamond. In: Shenderova, O. and Gruen, D. eds., Ultrananocrystalline Diamond: Synthesis, Properties, and Applications, William Andrew Publishing: Norwich, NY, USA, Chapter 7, 2006, pp. 513.
  • Treussart, F.; Jacques, V.; Wu, E.; Gacoln, T.; Grangier, P.; Roch, J.-F. Photoluminescence of single colour defects in 50 nm diamond nanocrystals. Phys. B Condens. Matt. 2006, 376–377, 926–929.
  • Perevedentseva, E.; Cheng, C.-Y.; Chung, P.-H.; Tu, J.-S.; Hsieh, Y.-H.; Cheng, C.-L. The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labeling. Nanotechnology 2007, 18, 315102.
  • Chang, Y.K.; Hsieh, H.H.; Pong, W.; Tsai, M.-H.; Chien, F.Z.; Tseng, P.K.; Chen, L.C.; Wang, T.Y.; Chen, K.H.; Bhusari, D.M.; Yan, J.R.; Lin, S.T. Quantum confinement effect in diamond nanocrystals studied by X-Ray-absorption spectroscopy. Phys. Rev. Lett. 1999, 82, 5377–5380.
  • Tang, Y.H.; Zhou, X.T.; Hu, Y.F.; Lee, C.S.; Lee, S.T.; Sham, T.K. A soft X-ray absorption study of nanodiamond films prepared by hot-filament chemical vapor deposition. Chem. Phys. Lett. 2003, 372, 320–324.
  • Raty, J.-Y.; Galli, G.; Bostedt, C.; van Buuren, T.; Terminello, L.J. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Phys. Rev. Lett. 2003, 90, 037401.
  • Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.
  • Williamson, A.J.; Grossman, J.C.; Hood, R.Q.; Puzder, A.; Galli, G. Quantum Monte Carlo calculations of nanostructure optical gaps: Application to silicon quantum dots. Phys. Rev. Lett. 2002, 89, 196803.
  • McIntosh, G.C.; Yoon, M.; Berber, S.; Tománek, D. Diamond fragments as building blocks of functional nanostructures. Phys. Rev. B 2004, 70, 045401.
  • Towler, M.D.; Hood, R.Q.; Needs, R.J. Minimum principles and level splitting in quantum Monte Carlo excitation spectra: Application to diamond. Phys. Rev. B 2000, 62, 2330–2337.
  • Drummond, N.D.; Williamson, A.J.; Needs, R.J.; Galli, G. Electron emission from diamondoids: A diffusion quantum Monte Carlo study. Phys. Rev. Lett. 2005, 95, 096801.
  • Bhattacharyya, S.; Auciello, O.; Birrell, J.; Carlisle, J.A.; Curtiss, L.A.; Goyette, A.N.; Gruen, D.M.; Krauss, A.R.; Schlueter, J.; Sumant, A.; Zapol, P. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 2001, 79, 1441.
  • Prasad, K.E.; Das, B.; Matira, U.; Ramamutry, U.; Rao, C.N.R. Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons.Proc. Nat. Acad. Sci. USA 2009, 106, 13186–13189.
  • Lehman, J.; Sanders, A.; Hanssen, L.; Wilthan, B.; Zeng, J.; Jensen, C. Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalite. Nano Lett. 2010, 10, 3261–3266.
  • Yu, A.P.; Ramesh, P.; Sun, X.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet - carbon nanotube filler for epoxy composites. Adv. Mater. 2008, 20, 4740–4744.
  • Shin, M.K.; Lee, B.; Kim, S.H.; Lee, J.A.; Spinks, G.M.; Gambhir, S.; Wallace, G.G.; Kozlov, M.E.; Baughman, R.H.; Kim, S.J. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 2012, 48, 650–652.
  • Rogalski, A. Infrared detectors: Status and trends. Progr. Quantum Electron 2003, 27, 59–210.
  • Wang, R.; Sun, J.; Gao, L.; Xu, C.; Zhang, J. Fibrous nanocomposites of carbon nanotubes and graphene-oxide with synergetic mechanical and actuative performance. Chem. Commun. 2011, 47, 8650–8652.
  • Wagner, H.D.; Lourie, O.; Feldman, Y.; Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 1998, 72, 188–190.
  • Xu, P.; Loomis, J.; king, B.; Panchapakesan, B. Nanotechnology 2012, 23, 315706.
  • Kausar, A. Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. Am J. polym. Sci. 2014, 4, 54–62.
  • De Vita, A.; Galli, G.; Canning, A.; Car, R. A microscopic model for surface-induced diamond-to-graphite transitions. Nature 1996, 379, 523–526.
  • Kern, G.; Hafner, J. Ab initio molecular-dynamics studies of the graphitization of flat and stepped diamond (111) surfaces. Phys. Rev. B 1998, 58, 13167–13175.
  • Li, J.; Ma, P.C.; Chow, W.S.; To, C.K.; Tang, B.Z. Kim, J.-K. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotube. Adv. Funct. Mater. 2007, 17, 3207–3215.
  • Ajayan, P.M.; Stephan, O.; Colliex, C.; Trauth, D. Aligned carbon nanotube arrays formed by cutting a polymer resin–nanotube composite. Science 1994, 265, 1212–1214.
  • Du, J.-H.; Bai, J.; Cheng, H.-M. The present status and key problems of carbon nanotube based polymer composites. Express Polym. Lett. 2007, 1, 253–273.
  • Jin, L.; Bower, C.; Zhou, O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 1998, 73, 1197–1199.
  • Shaffer, M.S.P.; Windle, A.H. Fabrication and characterization of CNT–PVA composites. Adv. Mater. 1999, 11, 937–941.
  • Geng, H.Z.; Rosen, R.; Zheng, B.; Shimoda, H.; Fleming, L.; Liu, J.; Zhou, O. Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv. Mater. 2002, 14, 1387–1390.
  • Safadi, B.; Andrews, R.; Grulke, E.A. Multi-walled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 2002, 84, 2660–2669.
  • Du, F.; Fischer, J.E.; Winey, K.I. Coagulation method for preparing single walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci. B 2003, 41, 3333–3338.
  • Mathur, R.B.; Pande, S.; Singh, B.P.; Dhami, T.L. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym. Composites. 2008, 29, 717–727.
  • Benoit, J.-M.; Corraze, B.; Lefrant, S.; Blau, W.J.; Bernier, P.; Chauvet, O. Transport properties of PMMA-carbon nanotubes composites. Synth. Met. 2001, 121, 1215–1216.
  • Lau, K.; Lu, M.; Lam, C.; Cheung, H.; Sheng, F.; Li, H. Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos. Sci. Technol. 2005, 65, 719–725.
  • Zhang, Q.-H.; Chen, D.J. Percolation threshold and morphology of composites of conducting carbon black/polypropylene/EVA. J Mater. Sci. 2004, 39, 1751–1757.
  • Hill, D.E.; Lin, Y.; Rao, A.M.; Allard, L.F.; Sun, Y.P. Functionalization of carbon nanotubes with polystyrene. Macromolecules 2002, 35, 9466–9471.
  • Kim, J.Y.; Kim, S.H. Influence of multiwall carbon nanotube on physical properties of poly (ethylene 2,6-naphthalate) nanocomposites. J. Polym. Sci. B Polym. Phys. 2006, 44, 1062–1071.
  • Haggenmueller, R.; Gommans, H.H.; Rinzler, A.G.; Fischer, J.E.; Winey, I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 2000, 330, 219–225.
  • Jin, Z.; Pramoda, K.P.; Xu, G.; Goh, S.H. Dynamic mechanical behaviour of melt-processed multiwalled carbon nanotube/poly(methyl methacrylate) composites. Chem. Phys. Lett. 2001, 337, 43–47.
  • Gojny, F.H.; Wichmann, M.H.G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon nanotubes reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 2004, 64, 2363–2371.
  • Moisala, A.; Li, Q.; Kinloch, I.A.; Windle, A.H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 2006, 66, 1285–1288.
  • Ma, P.C.; Kim, J.-K.; Tang, B.Z. Effects of silane functionalization on the properties of carbon nanotubes/epoxy nanocomposites. Compos. Sci. Technol. 2007, 67, 2965–2972.
  • Ma, P.C.; Tang, B.Z.; Kim, J.-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008, 46, 1497–1505.
  • Zhu, J.; Kim, J.; Peng, H.; Margrave, J.L.; Khabashesku, V.N.; Barrera, E.V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett. 2003, 3, 1107–1113.
  • Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. Study on poly(methyl methacrylate): carbon nanotube composites. Mater. Sci. Eng. A 1999, 271, 395–400.
  • Velasco-Santos, C.; Martinez-Hernandez, A.L.; Fisher, F.T.; Ruoff, R.; Castaño, V.M. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 2003, 15, 4470–4475.
  • Pande, S.; Mathur, R.B.; Singh, B.P.; Dhami, T.L. Synthesis and characterization of multiwalled carbon nanotubes-polymethyl methacrylate composites prepared by in situ polymerization method. Polym. Compos. 2009, 30, 1312–1317.
  • Wardle, B.L.; Saito, D.S.; Garcia, E.J.; Hart, A.J.; Villoria, R.G.; Verploegen, E.A. Fabrication and characterization of ultrahigh-volume- fraction aligned carbon nanotube polymer composites. Adv. Mater. 2008, 20, 2707–2714.
  • Vigolo, B.; Penicaud, A.; Coulon, C. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.
  • Mamedov, A.A.; Kotov, N.A.; Prato, M.; Guldi, D.M.; Wicksted, J.P.; Hirsch, A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nat. Mater. 2002, 1, 190–194.
  • Xia, H.; Wang, Q.; Li, K.; Hu, G.-H. Preparation of polypropylene/carbon nanotubes composite powder with a solid-state mechanochemical pulverization process. J. Appl. Polym. Sci. 2004, 93, 378–386.
  • Liao, K.; Li, S. Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 2001, 79, 4225–4227.
  • Mallick, P.K. Fiber-Reinforced Composites, 2nd edition, Marcel Dekker: New York, 1993.
  • Agarwal, B.D.; Broutman, L.G. Analysis Performance of Fiber Composites, Wiley: New York, 1980.
  • Frankland, S.J.V.; Caglar, A.; Brenner, D.W.; Griebel, M. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube polymer interfaces. J. Phys. Chem. B 2002, 106, 3046–3048.
  • Kim, J.K.; Mai, Y.W. Engineered Interfaces in Fiber Reinforced Composites, Elsevier: Oxford, 1998, 1–100.
  • Fornes, T.D.; Baur, J.W.; Sabba, Y.; Thomas, E.L. Morphology and properties of melt spun polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer 2006, 47, 1704–1714.
  • Wang, M.-W. Alignment of multiwall carbon nanotubes in polymer composites by dielectrophoresis. Jpn. J. Appl. Phys. 2009, 48, 035002.
  • Steinert, B.W.; Dean, D.R. Magnetic field alignment and electrical properties of solution cast PET–carbon nanotube composite films. Polymer 2009, 50, 898–904.
  • Desai, A.V.; Haque, M.A. Mechanics of the interface for carbon nanotube polymer composites. Thin-Walled Struct. 2005, 43, 1787–1803.
  • Putz, K.W.; Mitchell, C.A.; Krishnamoorti, R.; Green, P.F. Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 2286–2293.
  • Hwang, G.L.; Shieh, Y.-T.; Hwang, K.C. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Adv. Funct. Mater. 2004, 14, 487–491.
  • Bryning, M.B.; Islam, M.F.; Kikkawa, J.M.; Yodh, A.G. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv. Mater. 2005, 17, 1186–1191.
  • Sham, M.L.; Li, J.; Ma, P.C.; Kim, J.-K. Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review. J. Compos. Mater. 2009, 43, 1537–1564.
  • Sandler, J.K.W.; Kirk, J.E.; Kinloch, I.A.; Shaffer, M.S.P.; Windle, A.H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899.
  • Barrau, S.; Demont, P.; Perez, E.; Peigney, A.; Laurent, C.; Lacabanne, C. Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 2003, 36, 9678–9680.
  • Du, F.; Fischer, J.E.; Winey, K.I. Effect of nanotube alignment on percolation conductivity in carbon nanotubes/polymer composites. Phys. Rev. B Condens. Matt. 2005, 72, 121404/1–121404/4.
  • Stéphan, C.; Nguyen, T.P.; Lahr, B.; Blau, W.; Lefrant, S.; Chauvet, O. Raman spectroscopy and conductivity measurements on polymer-multiwalled carbon nanotubes composites. J. Mater. Res. 2002, 17, 396–400.
  • Kim, H.M.; Kim, K.; Lee, S.J.; Joo, J.; Yoon, H.S.; Cho, S.J.; Lyu, S.C.; Lee, C.J. Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: Applicationto electromagnetic interference shielding. Curr. Appl. Phys. 2004, 4, 577–580.
  • Lau, C.H.; Cervini, R.; Clarke, S.R.; Markovic, M.G.; Matisons, J.G.; Hawkins, S.C.; Huynh, C.P.; Simon, G.P. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J. Nanopart. Res. 2008, 10, 77–88.
  • Grimes, C.A.; Dickey, E.C.; Mungle, C.; Ong, K.G.; Qian, D. Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes. J. Appl. Phys. 2001, 90, 4134–4137.
  • Shenogin, S.; Xue, L.P.; Ozisik, R.; Keblinski, P.; Cahill, D.G. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J. Appl. Phys. 2004, 95, 8136–8144.
  • Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B.; Kinloch, I.A.; Bauhofer, W.; Windle, A.H.; Schulte, K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 2006, 47, 2036–2045.
  • Huxtable, S.T.; Cahill, D.G.; Shenogin, S.; Xue, L.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M.S.; Siddons, G.; Shim, M.; Keblinski, P. Interfacial heat flow in carbon nanotube suspension. Nat. Mater. 2003, 2, 731–734.
  • Shenogin, S.; Bodapati, A.; Xue, L.; Ozisik, R.; Keblinski, P. Effect of chemical functionalization on transport of carbon nanotube composites. Appl. Phys. Lett. 2004, 85, 2229–2231.
  • Huang, Y.; Li, N.; Ma, Y.; Feng, D.; Li, F.; He, X.; Lin, X.; Gao, H.; Chen, Y. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 2007, 45, 1614–1621.
  • Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P.C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 2006, 6, 1141–1145.
  • Shenderova, O.; Tyler, T.; Cunningham, G.; Ray, M.; Walsh, J.; Casulli, M.; Hens, S.; McGuire, G.; Kuznetsov, V.; Lipa, S. Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 2007, 16, 1213–1217.
  • Maitra, U.; Prasad, K.E.; Ramamurty, U.; Rao, C.N.R. Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Communicat. 2009, 149, 1693–1697.
  • Ozawa, M.; Inaguma, M.; Takahashi, M.; Kataoka, F.; Krüger, A.; Ōsawa, A.O. Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 2007, 19, 1201–1206.
  • Krueger, A.; Ozawa, M.; Jarre, G.; Liang, Y.; Stegk, J.; Lu, L. Deagglomeration and functionalisation of detonation diamond. Phys. Stat. Solid A 2007, 204, 2881–2887.
  • Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S.O.; Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 2006, 128, 11635–11642.
  • Li, L.; Davidson, J.L.; Lukehart, C.M. Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 2006, 44, 2308–2315.
  • Rehor, I.; Cigler, P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 2014, 46, 21–24.
  • Cho, H.-B.; Konno, A.; Fujihara, T.; Suzuki, T.; Tanaka, S.; Jiang, W.; Suematsu, H.; Niihara, K.; Nakayama, T. Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity. Compos. Sci. Technol. 2011, 72, 112–118.
  • Zhang, H.H.; Liu, Y.T.; Wang, R.; Yu, X.Y.; Qu, X.W.; Zhang, Q.X. Functionalization of nanodiamond with epoxy monomer. Chin. Chem. Lett. 2011, 22, 485–488.
  • Zhai, Y.-J.; Wang, Z.-C.; Huang, W.; Huang, J.-J.; Wang, Y.-Y.; Zhao, Y.-Q. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder. Mater. Sci. Eng. A 2011, 528, 7295–7300.
  • Spitalsky, Z.; Kromka, A.; Matejka, L.; Cernoch, P.; Kovarova, J.; Kotek, J.; Slouf, M. Effect of nanodiamond particles on properties of epoxy composites. Adv. Compos. Lett. 2008, 17, 29–34.
  • Li, L. Nanocarbons/polymer Brush Materials: Synthesis, Characterization and Application, Vanderbilt University: Nashville, TN, 2007.
  • Gavrilov, A.; Voznyakovskii, A. Rheological characteristics and relexation properties of polymer-nanodiamond composites. Russ. J. Appl. Chem. 2009, 82, 1041–1045.
  • Bershtein, V.; Karabanova, L.; Sukhanova, T.; Yakushev, P.; Egorova, L.; Lutsyk, E.; Svyatyna, A.; Vylegzhanina, M. Peculiar dynamics and elastic properties of hybrid semi-interpenetrating polymer network–3-D diamond nanocomposites. Polymer 2008, 49, 836–842.
  • Jee, A.-Y.; Lee, M. Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Curr. Appl. Phys. 2011, 11, 1183–1187.
  • Widmer, M.R.; Heuberger, M.; Vörös, J.; Spencer, N.D. Influence of polymer surface chemistry on frictional properties under protein lubrication condition: Implication for hip implant design. Tribol. Lett. 2001, 10, 111–116.
  • Lim, D.P.; Lee, J.Y.; Lim, D.S.; Ahn, S.G.; Lyo, I.W. Effect of reinforcement particle size on the tribological properties of nano-diamond filled polytetrafluoroethylene based coating. J. Nanosci. Nanotechnol. 2009, 9, 4197–4201.
  • Bobrovnitchii, G.S.; Skury, A.L.D.; Monteiro, S.N.; Tardim, R.C. Effect of nanodiamond addition on the mechanical properties of polycrystalline metallic and polymeric composites. Mater. Sci. Forum 2010, 660–661, 848–853.
  • Voznyakovskii, A.P.; Ginzburg, B.M.; Rashidov, D.G.; Tochil’nikov, D.G.; Tuichiev, S. Structure, mechanical, and tribological characteristics of polyurethane modified with nanodiamonds. Polym. Sci. Ser. A 2010, 52, 1044–1050.
  • Zhao, Y.-Q.; Lau, K.-T.; Kim, J.-k.; Xu, C.-L.; Zhao, D.-D.; Li, H.-L. Nanodiamond/PLA nanocomposites: Effect of nanodiamond on Structure and Properties of PLA. Compos. Part B Eng. 2010, 41, 646–653.
  • Hooper, J.B.; Schweizer, K.S.; Desai, T.G.; Koshy, R.; Keblinski, P. Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions. J. Chem. Phys. 2004, 121, 6986–6997.
  • Shenderova, O.; Grichko, V.; Hens, S.; Walch, J. Detonation nanodiamonds as UV radiation filter. Diam. Relat. Mater. 2007, 16, 2003–2008.
  • Pech, D.; Brunet, M.; Durou, H.; Huang, P.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.
  • Hassan, C.M.; Peppas, N.A. Biopolymers/PVA hydrogels/anionic polymerization nanocomposites. 2000, 153, 37–65.
  • Kurkin, T.S.; Ozerin, A.N.; Kechek’yan, A.S.; Gritsenko, O.T.; Ozerina, L.A.; Alkhanishvili, G.G.; Sushchev, V.G.; Dolmatov, V.Y. The structure and properties of polymer composite fibers based on poly(vinyl alcohol) and nanodiamond of detonation synthesis. Nanotechnol. Russ. 2010, 5, 340–351.
  • Protopapa, P.; Kontonasaki, E.; Bikiaris, D.; Parasekevopoulos, K.M.; Koidis, P. Reinforcement of a PMMA resin for fixed interim prostheses with nanodiamonds. Dent. Mater. J. 2011, 30, 222–231.
  • Jee, A.Y.; Lee, M. Exfoliated graphite reinforced PMMA composite: A study on nanoindentation and scratch behavior. J. Nanosci. Nanotechnol. 2012, 11, 533–536.
  • Zhang, Q.; Naito, K.; Tanaka, Y.; Kagawa, Y. Grafting polyimides from nanodiamonds. Macromolecules 2008, 41, 536–538.
  • Shenderova, O.; Grishko, V.; Cunningham, G.; Moseenkov, S.; McGuire, G.; Kuznetsov, V. Onion like carbon for terahertz electromagnetic shielding. Diam. Relat. Mater. 2008, 17, 462–466.
  • Gavrilov, N.N.; Okotrub, A.V.; Bulusheva, L.G.; Sedelnikova, O.V.; Yushina, I.V.; Kuznetsov, V.L. Dielectric properties of polystyrene/onion-like carbon composites in frequency range of 0.5–500 kHz. Compos. Sci. Technol. 2010, 70, 719–724.
  • Pradhan, B.; Srivastava, S.K. Synergistic effect of three-dimensional multi-walled carbon nanotube-graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym. Int. 2014, 63, 1219–1228.
  • Li, W.; He, D.; Bai, J. The Influence of nano/micro hybrid structure on the mechanical and self-sensing properties of carbon nanotube-microparticle reinforced epoxy matrix composite. Compos. Part A Sci. Manufact. 2013, 54, 28–36.
  • Farooq, U.; Khurram, A.A.; Khan, M.S.; Rakha, S.A.; Ali, N.; Shahid, M.; Munir, A.; Subhani, T. Carbon nanotube/nanodiamond reinforced carbon fiber epoxy matrix composites—processing and characterization. J. Eng. Sci. 2013, 6, 1–4.
  • Chatterjee, S.; Nafezarefi, F.; Tai, N.H.; Schlagenhauf, L.; Nuesh, F.A.; Chu, B.T.T. Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 2012, 50, 5380–5386.
  • Li, W.; Dichiara, A.; Bai, J. Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 2013, 74, 221–227.
  • Montoro, L.A.; Rosolen, J.M. A multi-step treatment to effective purification of single walled carbon nanotubes. Carbon 2006, 44, 3293–3301.
  • Cooper, C.A.; Cohen, S.R.; Barber, A.H.; Wagner, H.D. Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 2002, 81, 3873–3875.
  • Sen, R.; Zhao, B.; Perea, D.; Itkis, M.E.; Hu, H.; Love, J.; Bekyarova, E. Haddon, R.C. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett. 2004, 4, 459–464.
  • Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D.M.; Holzinger, M.; Hirsch, A. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 760–761.
  • Kinloch, I.A.; Roberts, S.A.; Windle, A.H. A rheological study of concentrated aqueous nanotube dispersions. Polymer 2002, 43, 7483–7491.
  • Garg, P.; Singh, B.P.; Kumar, G.; Gupta, T.; Pandey, I.; Seth, R.K.; Tandon, R.P.; Mathur, R.B. Effect of dispersion conditions on the mechanical properties of multi-walled carbon nanotubes based epoxy resin composites. J. Polym. Res. 2011, 18, 1397–1407.
  • Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652.
  • Wang, X.K.; Lin, X.W.; Dravid, V.P.; Ketterson, J.B.; Chang, R.P.H. Growth and characterization of buckybundles. Appl. Phys. Lett. 1993, 62, 1881–1883.
  • deHeer, W.A.; Bacsa, W.S.; Chatelain, A.; Gerfin, T.; Humphrey-Baker, R.; Forro, L.; Ugarte, D. Aligned carbon nanotube films - production and optical and electronic-properties. Science 1995, 268, 845–847.
  • Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703.
  • Smith, B.W.; Benes, Z.; Luzzi, D.E.; Fischer, J.E.; Walters, D.A.; Casavant, M.J.; Schmidt, J.; Smalley, R.E. Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 663–665.
  • Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 2009, 47, 1723–1737.
  • Feng, Q.-P.; Yang, J.-P.; Fu, S.-Y.; Mai, Y.-W. Synthesis of carbon nanotube/epoxy composite films with a high nanotube loading by a mixed-curing-agent assisted layer-by-layer method and their electrical conductivity. Carbon 2010, 48, 2057–2062.
  • Kumar, S.; Sun, L.; Caceres, S.; Li, B.; Wood, W.; Perugini, A.; Maguire, R.G.; Zhong, W.H. Dynamic synergy of graphitic nanoplatelets and multiwalled carbon nanotubes in polyetherimide nanocomposites. Nanotechnology 2010, 21, 105702–105711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.