261
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Swelling Behavior of Hydrogels within Auxetic Polytetrafluoroethylene Jacket

, , &

REFERENCES

  • Carl, A.; Ledet, E.; Yuan, H.; Sharan, A. New developments in nucleus pulposus replacement technology. Spine J. 2004, 4, S325–S329.
  • Di Martino, A.; Vaccaro, A.R.; Lee, J.Y.; Denaro, V.; Lim, M.R. Nucleus pulposus replacement: Basic science and indications for clinical use. Spine J. 2005, 30, 16–22.
  • Klara, P.M.; Ray, C.D. Artificial nucleus replacement: Clinical experience. Spine J. 2002, 27, 1374–1377.
  • Thomas, J.; Lowman, A.; Marcolongo, M. Novel associated hydrogels for nucleus pulposus replacement. J. Biomed. Mater. Res. 2003, 67A, 1329–1337.
  • Bertagnoli, R.; Sabatino, C.T.; Edwards, J.T.; Gontarz, G.A.; Prewett, A.; Parsons, J.R. Mechanical testing of a novel hydrogel nucleus replacement implant. Spine J. 2005, 5, 672–681.
  • Lakes, R. Foam structures with a negative Poisson’s ratio. Science 1987, 235, 1038–1040.
  • Evans, K.E. Auxetic polymers: A new range of materials. Endeavour 1991, 15, 170–174.
  • Caddock, B.D.; Evans, K.E. Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D Appl. Phys. 1989, 22, 1877–1882.
  • Larsen, U.D.; Signund, O.; Bouwsta, S. Design and fabrication of compliant mechanisms and material structures with negative Poisson’s ratio. J. Microelectromech. Syst. 1997, 6, 99–106.
  • Lakes, R. Advances in negative Poisson’s ratio materials. Adv. Mater. 1993, 5, 293–296.
  • Alderson, A.; Evans, K.E. Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 2002, 89, 225503.
  • Lakes, R.S.; Witt, R. Making and characterizing negative Poisson’s ratio materials. Inter. J. Mech. Eng. Edu. 2002, 30, 50–58.
  • Alderson, K.L.; Alderson, A.; Webber, R.S.; Evans, K.E. Evidence for uniaxial drawing in the fibrillated microstructure of auxetic microporous polymers. J. Mater. Sci. Lett. 1998, 17, 1415–1419.
  • Alderson, K.L.; Evans, K.E. Strain-dependent behaviour of microporous polyethylene with a negative Poisson’s ratio. J. Mater. Sci. Lett. 1993, 28, 4092–4098.
  • Love, A.E.H. Treatise on the Mathematical Theory of Elasticity, Cambridge University Press: Cambridge, England, 1927.
  • Fung, Y.C. Biomechanics – Mechanical Properties of Living Tissues, Springer Press: New York, 1993.
  • Baughman, R.H.; Shacklette, J.M.; Zakhidov, A.A.; Stafstrom, S. Negative Poisson’s ratios as a common feature of cubic metals. Nature 1998, 392, 362–365.
  • Gunton, D.J.; Saunders, G.A. The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth. J. Mater. Sci. 1972, 7, 1061–1068.
  • Yeganeh-Haeri, A.; Weidner, D.J.; Parise, J.B. Elasticity of α-cristobalite: A silicon dioxide with a negative Poisson’s ratio. Science 1992, 257, 650–652.
  • Miki, M.; Morotsu, Y. The peculiar behavior of the Poisson’s ratio of laminated fibrous composites. JSME. Int. J. I. 1989, 32, 67–72.
  • Milton, G.W. Composite materials with Poisson’s ratios close to −1. Mech. Phys. Solids. 1992, 40, 1105–1137.
  • Theocaris, P.S.; Stavroulakis, G.E.; Panagiotopoulos, P.D. Negative Poisson’s ratios in composites with star-shaped inclusions: A numerical homogenization approach. Arch. Appl. Mech. 1997, 67, 247–286.
  • Pour, N.; Altus, E.; Basch, H.; Hoz, S. The origin of the auxetic effect in prismanes: Bowtie structure and the mechanical properties of biprismanes. J. Phys. Chem. C 2009, 113, 3467–3470.
  • Grima, J.N.; Gatt, R.; Ravirala, N.; Alderson, A.; Evans, K.E. Negative Poisson’s ratios in cellular foam material. Mater. Sci. Eng. A 2006, 423, 214–218.
  • Kolpakov, A.G. On the determination of the averaged moduli of elastic gridworks. Prikl. Mater. Mekh. 1985, 59, 969–977.
  • Almgren, R.F. An isotropic three-dimensional structure with Poisson’s ratio = −1. J. Elasticity. 1985, 15, 427–430.
  • Bowick, M.; Cacciuto, A.; Thorleifsson, G.; Travesset, A. Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes. Phys. Rev. Lett. 2001, 87, 148103.
  • He, C.; Liu, P.; Griffin, A.C. Toward negative Poisson ratio polymers through molecular design. Macromolecules 1998, 31, 3145–3147.
  • Veronda, D.R.; Westmann, R.A. Mechanical characterization of skin—finite deformations. J. Biomech. 1970, 3, 111–124.
  • Frohlich, L.M.; LaBarbera, M.; Stevens, W.P. Poisson’s ratio of a crossed fiber sheath: The skin of aquatic salamanders. J. Zool. 1994, 232, 231–252.
  • Williams, J.L.; Lewis, J.L. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J. Biomech. Eng. 1982, 104, 50–56.
  • Mizzi, L.; Attard, D.; Casha, A.; Grima, J.N.; Gatt, R. On the suitability of hexagonal honeycombs as stent geometries. Phys. Status Solidi (b) 2014, 251, 328–337.
  • Bhullar, S.K.; Mawanane Hewage, A.T.; Alderson, A.; Alderson, K.; Jun, M.B.G. Influence of negative Poisson’s ratio on stent applications. Adv. Mat. 2013, 2, 42–47.
  • Pan, Y.; Dong, S.; Hao, Y.; Chu, T.; Li, C.; Zhang, Z.; Zhou, Y. Demineralized bone matrix gelatin as scaffold for tissue engineering. Afr. J. Microbiol. Res. 2010, 4, 865–870.
  • Scarpa, F. Auxetic materials for bioprostheses. IEEE Sig. Process. Mag. 2008, 25, 128–126.
  • Palmaz, J.C. Review of polymeric graft materials for endovascular applications. J. Vasc. Interv. Radiol. 1998, 9, 7–13.
  • Liulan, L.; Qingxi, H.; Xianxu, H.; Gaochun, X. Design and fabrication of bone tissue engineering scaffolds via rapid prototyping and CAD. J. Rare Earth. 2007, 25, 379–383.
  • Wang, Y.-C.; Lakes, R. Analytical parametric analysis of the contact problem of human buttocks and negative Poisson’s ratio foam cushions. Int. J. Solids. Struct. 2002, 39, 4825–4838.
  • Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007.
  • Rudzinski, W.E.; Dave, A.M.; Vaishnav, U.H.; Kumbar, S.G.; Kulkarni, A.R.; Aminabhavi, T.M. Hydrogels as controlled release devices in agriculture. Des. Monomers Polym. 2012, 5, 39–65.
  • Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1877.
  • Devi, N.; Sarma, J.; Das, M. Blood compatible hydrogel composed of starch, 2-acrylamido-2-ethylpropane sulphonic acid and acrylamide. Int. J. Lat. Res. Sci. Tech. 2014, 3, 205–210.
  • Liu, Y.; Xie, J.-J.; Zhang, X.-Y. Synthesis and properties of the copolymer of acrylamide with 2-acrylamido-2-methylpropanesulfonic acid. J. Appl. Polym. Sci. 2003, 90, 3481–3487.
  • Urban, J.P.G.; Maroudas, A. Swelling of the intervertebral disc in vitro. Connect. Tissue Res. 1981, 9, 1–10.
  • van Dijk, B.; Potier, E.; Ito, K. Culturing bovine nucleus pulposus explants by balancing medium osmolarity. Tissue Eng. Part C Methods. 2011, 17, 1089–1096.
  • Ma, Y.; Zheng, Y.; Meng, H.; Song, W.; Yao, X.; Tan, J. Design, preparation and characterization of biological auxetic hydrogels with shell-core structure, 18th Annual International Conference on Composite Materials, Jeju Island, South Korea, Aug 21–26, 2011.
  • Robert, W.G. Process for producing porous products. US Patent 3953566, 1973.
  • Chiesa, R.; Melissano, G.; Castellano, R.; Frigerio, S. Extensible expanded polytetrafluoroethylene vascular grafts for aortoiliac and aortofemoral reconstruction. Cardiovasc. Surg. 2000, 8, 538–544.
  • Caddock, B.D.; Evans, K.E. Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses. Biomaterials 1995, 16, 1109–1115.
  • Sadeghi, M.; Yarahmadi, M. Swelling and characterization behavior of anti-salt superabsorbent based on carboxymethylcellulose-g-PAA-co-BuMC hydrogel. Orient. J. Chem. 2011, 27, 435–444.
  • Wang, Y.; Shi, X.; Wang, W.; Wang, A. Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly(AA-co-AMPS) superabsorbent hydrogel. Turk. J. Chem. 2013, 37, 149–159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.