919
Views
9
CrossRef citations to date
0
Altmetric
Reviews

A Review on Materials Derived from Polystyrene and Different Types of Nanoparticles

&

REFERENCES

  • Zhang, A.-Q.; Cai, L.-J.; Sui, L.; Qian, D.-J.; Chen, M. Reducing properties of polymers in the synthesis of noble metal nanoparticles. Polym. Rev. 2013, 53, 240–276.
  • Francis, R.; Joy, N.; Aparna, E.P.; Vijayan, R. Polymer grafted inorganic nanoparticles, preparation, properties, and applications: A review. Polym. Rev. 2014, 54, 268–347.
  • Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation and characterization. J. Appl. Pharm. Sci. 2011, 01, 228–234.
  • Grubbs, R.B. Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 2007, 47, 197–215.
  • Abhilash, M. Potential applications of nanoparticles. Int. J. Pharm. Bio Sci. 2010, 1, 1–10.
  • Sharma, S.; Kumar, S.; Bulchandini, B.D.; Taneja, S.; Banyal, S. Green synthesis of silver nanoparticles and their antimicrobial activity against gram positive and gram negative bacteria. Int. J. Biotechnol. Bioeng. Res. 2013, 4, 341–346.
  • Shameli, K.; Ahmad, M.M.B.; Mohsen, Z.; Yunis, W.Z.; Ibrahim, N.A.; Rustaiyan, A. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int. J. Nanomed. 2011, 6, 581–590.
  • Wong, B.A.; Nash, D.G.; Moss, O.R. Generation of nanoparticle agglomerates and their dispersion in lung serum simulant or water. J. Phys. Conf. Ser. 2009, 151, 1–7.
  • Yokoyama, R.; Suzuki, S.; Shirai, K.; Yamauchi, T.; Tsubokawa, N.; Tsuchimochi, M. Preparation and properties of biocompatible polymer-grafted silica monoparticles. Eur. Polym. J. 2006, 42, 3221–3229.
  • Santos, L.; Neto, J.P.; Crespo, A.; Nunes, D.; Costa, N.; Fonseca, I.M.; Barquinha, P.; Pereira, L.; Silva, J.; Martins, R.; Fortunato, E. WO3 nanoparticle-based conformable pH sensor. ACS Appl. Mater. Interfaces 2014, 6, 12226–12234.
  • Nguyen, K.T.; Zhao, Y. Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 2014, 6, 6245–6266.
  • Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848.
  • Kessler, R. Engineered nanoparticles in consumer products: Understanding a new ingredient. Environ. Health Perspect. 2011, 119, a120–a125.
  • Schmid, K.; Riediker, M. Use of nanoparticles in Swiss industry: A targeted survey. Environ. Sci. Technol. 2008, 42, 2253–2260.
  • Nasir, A.; Kausar, A.; Younus, A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym. Plast. Technol. Eng. 2014, 54, 325–341. doi: 10.1080/03602559.2014.958780
  • Tu, H.; Ye, L. Thermal conductive PS/graphite composites. Polym. Adv. Technol. 2009, 20, 21–27.
  • Gwinn, M.R.; Vallyathan, V. Nanoparticles: Health effects-pros and cons. Environ. Health Perspect. 2006, 114, 1818–1825.
  • Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater. 2014, 26, 59–71.
  • Yong, K.-T.; Swihart, M.T.; Ding, H.; Prasad, P.N. Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 2009, 4, 79–93.
  • Shivashankara, V.S.; Yogananda, R.; Bharathi, D.R. A review on nanoparticles applications in different drug delivery systems. Am. J. Pharm. Tech. Res. 2012, 2, 162–176.
  • Zhang, Y.; Huang, R.; Zhu, X.; Wang, L.; Wu, C. Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Chin. Sci. Bull. 2012, 57, 238–246.
  • Hirsch, L.R.; Gobin, A.M.; Lowery, A.R.; Tam, F.; Drezek, R.A.; Halas, N. Metal nanoshells. J. Ann. Biomed. Eng. 2006, 34, 15–22.
  • Rao, C.N.R.; Kulkarni, G.U.; Govindaraj, A.; Satishkumar, B.C.; Thomas, P. Metal nanoparticles, nanowires, and carbon nanotubes. Pure Appl. Chem. 2000, 72, 21–33.
  • Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. BioAllied. Sci. 2010, 2, 282–289.
  • Sau, T.K.; Rogach, A.L.; Jäckel, F.; Klar, T.A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2010, 22, 1805–1825.
  • Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 1333–1383.
  • Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272–2280.
  • Conde, J.; Doria, G.; Baptista1, P. Noble metal nanoparticles applications in cancer. J. Drug Deliv. 2012, 2012, 1–12.
  • Li, C.; Li, D.; Wan, G.; Xu, J.; Hou, W. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: Temperature and pH controls. Nanoscale Res. Lett. 2011, 6, 440.
  • Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707.
  • Krutyakov, Y.A.; Kudrinskiy, A.A.; Olenin, A.Y.; Lisichkin, G.V. Synthesis and properties of silver nanoparticles: Advances and prospects. Russ. Chem. Rev. 2008, 77, 233–257.
  • Rodríguez-León, E.; Iñiguez-Palomares, R.; Navarro, R.; Herrera-Urbina, R.; Tánori, J.; Iñiguez-Palomares, C.; Maldonado, A. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 2013, 8, 318.
  • Hussain, J.I.; Kumar, S.; Hashmi, A.A.; Khan, Z. Silver nanoparticles: Preparation, characterization, and kinetics. Adv. Mat. Lett. 2011, 2, 188–194.
  • Frazer, R.A. Use of silver nanoparticles in HIV treatment protocols: A research proposal. J. Nanomed. Nanotechnol. 2012, 3, 1–5.
  • He, J.; Kunitake, T.; Nakao, A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 2003, 15, 4401–4406.
  • Sung, L.-P.; Scierka, S.; Baghai-Anaraki, M.; Ho, D.L. Characterization of metal-oxide nanoparticles: Synthesis and dispersion in polymeric coatings. Mat. Res. Soc. Symp. Proc. 2003, 740. DOI:10.1557/PROC-740-I5.4
  • Tang, Z.-X.; Lv, B.-F. MgO nanoparticles as antibacterial agent: Preparation and activity. Braz. J. Chem. Eng. 2014, 31, 591–601.
  • Yogesh Kumar, K.; Muralidhara, H.B.; Arthoba Nayaka, Y.; Balasubramanyam, J.; Hanumanthappa, H. Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol. 2013, 246, 125–136.
  • Pucci, A.; Willinger, M.-G.; Liu, F.; Zeng, X.; Rebuttini, V.; Clavel, G.; Bai, X.; Ungar, G.; Pinna, N. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices. ACS Nano 2012, 6, 4382–4391.
  • Wang, L.; Gao, L. Morphology-controlled synthesis and magnetic property of pseudocubic iron oxide nanoparticles. J. Phys. Chem. C 2009, 113, 15914–15920.
  • de la Peña O’Shea, V.A.; Consuelo Álvarez-Galván, M.; Campos-Martin, J.M.; Menéndez, N.N.; Tornero, J.D.; Fierro, J.L.G. Surface and structural features of Co-Fe oxide nanoparticles deposited on a silica substrate. Eur. J. Inorg. Chem. 2006, 2006, 5057–5068.
  • D’Amato, R.; Falconieri, M.; Gagliardi, S.; Popovici, E.; Serra, E.; Terranova, G.; Borsella, E. Synthesis of ceramic nanoparticles by laser pyrolysis: From research to applications. J. Anal. Appl. Pyrol. 2013, 104, 461–469.
  • Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027–1040.
  • Gao, G.-M.; Zou, H.-F.; Gan, S.-C.; Liu, Z.-J.; An, B.-C.; Xu, J.-J.; Li, G.-H. Preparation and properties of silica nanoparticles from oil shale ash. Powder Technol. 2009, 191, 47–51.
  • Du, Y.; Luna, L.E.; Tan, W.S.; Rubner, M.F.; Cohen, R.E. Hollow silica nanoparticles in UV–Visible antireflection coatings for poly(methyl methacrylate) substrates. ACS Nano 2010, 4, 4308–4316.
  • Khan, Z.A.; Kumar, R.; Dutta, J. Multilayer thin films of colloidal gold and silica nanoparticles: Effect of polyelectrolyte coating. Can. J. Chem. Eng. 2012, 90, 919–924.
  • Chen, Z.; Li, Z.; Lin, Y.; Yin, M.; Ren, J.; Qu, X. Bioresponsive hyaluronic acid-capped mesoporous silica nanoparticles for targeted drug delivery. Chem. Eur. J. 2013, 19, 1778–1783.
  • Sampaio, S.; Maia, F.; Gomes, J.R. Diffusion of coloured silica nanoparticles into human hair. Color. Technol. 2011, 127, 55–61.
  • Rao, K.S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K.J. A novel method for synthesis of silica nanoparticles. Colloid Interface Sci. 2005, 289, 125–131.
  • Nandiyanto, A.B.D.; Kim, S.-G.; Iskandar, F.; Okuyama, K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Micropor. Mesopor. Mater. 2009, 120, 447–453.
  • Stanley, R.; Nesara, A.S. Effect of surfactants on the wet chemical synthesis of silica nanoparticles. Int. J. Appl. Sci. Eng. 2014, 12, 9–21.
  • Moreno, P.; Méndez, C.; García, A.; Torchia, G.; Delgado, D.; Vázquez de Aldana, J.R.; Arias, I.; Roso, L. Synthesis of ceramic nanoparticles by ultrafast laser ablation of solid targets in water. J. Nanosci. Nanotechnol. 2006, 6, 1961–1967.
  • Husen, A.; Siddiqi, K. Plants and microbes assisted selenium nanoparticles: Characterization and application. J. Nanobiotechnol. 2014, 12, 28.
  • Ramamurthy, C.H.; Sampath, K.S.; Arunkumar, P.; Suresh Kumar, M.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013, 36, 1131–1139.
  • Torres, S.K.; Campos, V.L.; León, C.G.; Rodríguez-Llamazares, S.M.; Rojas, S.M.; González, M.; Smith, C.; Mondaca, M.A. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res. 2012, 14, 1–9.
  • Fesharaki, P.J.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 2010, 41, 461–466.
  • Giam, L.R.; He, S.; Horwitz, N.T.; Eichelsdoerfer, D.J.; Chai, J.; Zheng, Z.; Kim, D.; Shim, W.; Mirkin, C.A. Positionally defined, binary semiconductor nanoparticles synthesized by scanning probe block copolymer lithography. Nano Lett. 2012, 12, 1022–1025.
  • Arao, Y.; Hirooka, Y.; Tsuchiya, K.; Mori, Y. Structure and photoluminescence properties of zinc sulfide nanoparticles prepared in a clay suspension. J. Phys. Chem. C 2009, 113, 894–899.
  • Wang, C.-L.; Hsao, B.-J.; Lai, S.-F.; Chen, W.-C.; Chen, H.-H.; Chen, Y.-Y.; Chien, C.-C.; Cai, X.; Kempson, I.M.; Hwu, Y.; Margaritondo, G. One-pot synthesis of AuPt alloyed nanoparticles by intense x-ray irradiation. Nanotechnology 2011, 22, 065605.
  • Zhang, Q.; Lee, J.Y.; Yang, J.; Boothroyd, C.; Zhang, J. Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology 2007, 18, 245605–245612.
  • Kuladeep, R.; Jyothi, L.; Alee, K.S.; Deepak, K.L.N.; Rao, D.N. Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Opt. Mater. Express 2012, 2, 161–172.
  • Yang, M.; Wang, Z.; Wang, W.; Liu, C. Synthesis of AuPd alloyed nanoparticles via room-temperature electron reduction with argon glow discharge as electron source. Nanoscale Res. Lett. 2014, 9, 405.
  • Weng, J.; Ren, J. Luminescent quantum dots: A very attractive and promising tool in biomedicine. Curr. Med. Chem. 2006, 13, 897–909.
  • Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.
  • Grieve, K.; Mulvaney, P.; Grieser, F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr. Opin. Colloid Interface Sci. 2000, 5, 168–172.
  • Amiri, G.R.; Fatahian, S.; Mahmoudi, S. Preparation and optical properties assessment of CdSe quantum dots. Mater. Sci. Appl. 2013, 4, 134–137.
  • Peng, J.; Gao, W.; Gupta, B.K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L.B.; Zhan, X.; Gao, G.; Vithayathil, S.A.; Kaipparettu, B.A.; Marti, A.A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P.M. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.
  • Nagavarma, B.V.N.; Yadav, H.K.S.; Ayaz, A.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res. 2012, 5, 16–23.
  • Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y. Synthesis, properties, and applications of low-dimensional carbon-related nanomaterials. J. Nanomater. 2011, 2011, 1–21.
  • Fu, X.; Li, D.; Zhang, Y. Synthesis of photoluminescent carbon nanoparticles from graphite. J. Nanopart. Res. 2013, 15, 1598.
  • Gaddam, R.R.; Kantheti, S.; Narayan, R.; Raju, K.V.S.N. Graphitic nanoparticles from thermal dissociation of camphor as an effective filler in polymeric coatings. RSC Adv. 2014, 4, 23043–23049.
  • Panjiar, H.; Gakkhar, R.P.; Daniel, B.S.S. Modeling mechanical milling process for synthesis of graphite nanoparticles and their characterization. Adv. Mater. Res. 2014, 922, 586–591.
  • Qian, W.; Chen, Q.; Cao, F.; Chen, C. Synthesis and characterization of polyhedral graphite particles. The Open Mater. Sci. J. 2008, 2, 19–22.
  • Pagona, G.; Tagmatarchis, N. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr. Med. Che. 2006, 13, 1789–1798.
  • Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Adamc, O.J.V.; Kizek, R. Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 2011, 21, 15872–15884.
  • Ahmad, S.N.; Hakeem, S.; Alvi, R.A.; Farooq, K.; Farooq, N.; Yasmin, F.; Saeed, S. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites. J. Phys. Conf. Ser. 2013, 439, 012009.
  • Journet, C.; Picher, M.; Jourdain, V. Carbon nanotube synthesis: From large-scale production to atom-by-atom growth. Nanotechnology 2012, 23, 142001.
  • Sanchez-Valencia, J.R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64.
  • Golnabi, H. Carbon nanotube research developments in terms of published papers and patents, synthesis and production. Sci. Iran. 2012, 19, 2012–2022.
  • Trojanowicz, M. Analytical applications of carbon nanotubes: A review. TrAC Trends Anal. Chem. 2006, 25, 480–489.
  • Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: buckminsterfullerene. Nature 1985, 318, 162–163.
  • Klod, S.; Dunsch, L. Influence of the cage size on the dynamic behavior of fullerenes: A study of 13C NMR spin–lattice relaxation. ACS Nano 2010, 4, 3236–3240.
  • Qiu, J.-S.; Zhou, Y.; Yang, Z.-G.; Wang, D.-K.; Guo, S.-C.; Tsang, S.C.; Harris, P.J.F. Preparation of fullerenes using carbon rods manufactured from Chinese hard coals. Fuel 2000, 79, 1303–1308.
  • Lin, C.-M.; Lu, T.-Y. C60 fullerene derivatized nanoparticles and their application to therapeutics. Recent Pat. Nanotechnol. 2012, 6, 105–113.
  • Chen, G.X.; Hong, M.H.; Chong, T.C.; Elim, H.I.; Ma, G.H.; Ji, W. Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys. 2004, 95, 1455–1459.
  • Yun, K.-S.; Kim, B.-R.; Kim, S.-C.; Jung, S.-C.; Kang, W.-S.; Kim, S.-J. Carbon black nanoparticles with a high reversible capacity synthesized by liquid phase plasma process. Res. Chem. Intermed. 2014, 40, 2559–2564.
  • Panchompoo, J.; Aldous, L.; Downing, C.; Crossley, A.; Compton, R.G. Facile synthesis of Pd nanoparticle modified carbon black for electroanalysis: Application to the detection of hydrazine. Electroanalysis 2011, 23, 1568–1578.
  • Hu, S.; Dong, Y.; Yang, J.; Liu, J.; Cao, S. Simultaneous synthesis of luminescent carbon nanoparticles and carbonnanocages by laser ablation of carbon black suspension and their optical limiting properties. J. Mater. Chem. 2012, 22, 1957–1961.
  • Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotechnol. 2012, 7, 12–23.
  • Kulakova, I.I.; Korol’kov, V.V.; Yakovlev, R.Y.; Lisichkin, G.V. The structure of chemically modified detonation-synthesized nanodiamond particles. Nanotechnol. Russ. 2010, 5, 474–485.
  • Hu, S.; Tian, F.; Bai, P.; Cao, S.; Sun, J.; Yang, J. Synthesis and luminescence of nanodiamonds from carbon black. Mater. Sci. Eng. B 2009, 157, 11–14.
  • Vlasov, I.I.; Shiryaev, A.A.; Rendler, T.; Steinert, S.; Lee, S.-Y.; Antonov, D.; Vörös, M.; Jelezko, M.; Fisenko, A.V.; Semjonova, L.F.; Biskupek, J.; Kaiser, U.; Lebedev, O.I.; Sildos, I.; Hemmer, P.R.; Konov, V.I.; Gali, A.; Wrachtrup, J. Molecular-sized fluorescent nanodiamonds. Nature Nanotechnol. 2014, 9, 54–58.
  • Moreno-Vega, A.-I.; Gómez-Quintero, T.; Nuñez-Anita, R.-E.; Acosta-Torres, L.-S.; Castaño, V. Polymeric and ceramic nanoparticles in biomedical applications. J. Nanotechnol. 2012, 2012, 1–10.
  • Wurm, F.R.; Weiss, C.K. Nanoparticles from renewable polymers. Front. Chem. 2014, 2, 1–13.
  • Il’ina, V.A.; Varlamov, V.P.; Ermakov, Y.A.; Orlov, V.N.; Skryabin, K.G. Chitosan is a natural polymer for constructing nanoparticles. Dokl. Chem. 2008, 421, 165–167.
  • Hornig, S.; Heinze, T.; Remzi Becerb, C.; Schubert, U.S. Synthetic polymeric nanoparticles by nanoprecipitation. J. Mater. Chem. 2009, 19, 3838–3840.
  • Pham, B.; Guagliardo, P.; Williams, J.; Samarin, S.; Smith, S.V. A study of porosity of synthetic polymer nanoparticles using PALS. J. Phys. Conf. Ser. 2011, 262, 012048.
  • Hoshino, Y.; Urakami, T.; Kodama, T.; Koide, H.; Oku, N.; Okahata, Y.; Shea, K.J. Design of synthetic polymer nanoparticles that capture and neutralize a toxic peptide. Small 2009, 5, 1562–1568.
  • Tuncel, D.; Demir, H.V. Conjugated polymer nanoparticles. Nanoscale 2010, 2, 484–494.
  • Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S. Conjugated polymer nanoparticles: Preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 2013, 42, 6620–6633.
  • Yoon, J.; Kwag, J.; Shin, T.J.; Park, J.; Lee, Y.M.; Lee, Y.; Park, J.; Heo, J.; Joo, C.; Park, T.J.; Yoo, P.J.; Kim, S.; Park, J. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv. Mater. 2014, 26, 4559–4564.
  • Tang, R.; Feng, X. Highly luminescent conjugated polymer nanoparticles for imaging and therapy. Can. Chem. Trans. 2013, 1, 78–84.
  • Shibata, A.; McMullen, E.; Pham, A.; Belshan, M.; Sanford, B.; Zhou, Y.; Goede, M.; Date, A.A.; Destache, C.J. Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res. Hum. Retroviruses 2013, 29, 746–754.
  • Lamoudi, L.; Chaumeil, J.C.; Daoud, K. PLGA Nanoparticles loaded with the non-steroid anti-inflammatory: Factor influence study and optimization using factorial design. Int. J. Chem. Eng. Appl. 2013, 4, 369–372.
  • Musyanovych, A.; Schmitz-Wienke, J.; Mailänder, V.; Walther, P.; Landfester, K. Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol. Biosci. 2008, 8, 127–139.
  • Sánchez-Navarro, M.; Rojo, J. Synthetic strategies to create dendrimers: Advantages and drawbacks. Front. Nanosci. 2012, 4, 143–156.
  • Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 2005, 10, 35–43.
  • Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Canc. Res. 2008, 14, 1310–1316.
  • Zhang, H.; Zhu, J.; He, J.; Qiu, F.; Zhang, H.; Yang, Y.; Lee, H.; Chang, T. Easy synthesis of dendrimer-like polymers through a divergent iterative “end-grafting” method. Polym. Chem. 2013, 4, 830–839.
  • Lim, J.; Kostiainen, M.; Maly, J.; da Costa, V.C.P.; Annunziata, O.; Pavan, G.M.; Simanek, E.E. Synthesis of large dendrimers with the dimensions of small viruses. J. Am. Chem. Soc. 2013, 135, 4660–4663.
  • Ekambaram, P.; Sathali, A.A.H.; Priyanka, K. Solid lipid nanoparticles: A review. Sci. Revs. Chem. Commun. 2012, 2, 80–102.
  • Garud, A.; Singh, D.; Garud, N. Solid lipid nanoparticles (SLN): Method, characterization and applications. Int. Curr. Pharm. J. 2012, 1, 384–393.
  • Sharma, V.K.; Diwan, A.; Sardana, S.; Dhall, V. Solid lipid nanoparticle system: An overview. Int. J. Res. Pharm. Sci. 2011, 2, 450–461.
  • Naguib, Y.W.; Rodriguez, B.L.; Li, X.; Hursting, S.D.; Williams, R.O.; Cui, Z. Solid lipid nanoparticle formulations of docetaxel prepared with high melting point triglycerides: In vitro and in vivo evaluation. Mol. Pharmaceutics 2014, 11, 1239–1249.
  • Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Delivery Rev. 2001, 47, 165–196.
  • Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102.
  • Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: State of the art. J. Coll. Sci. Biotechnol. 2012, 1, 147–168.
  • Hood, R.R.; DeVoe, D.L.; Atencia, J.; Vreeland, W.N.; Omiatek, D.M. A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Lab. Chip 2014, 14, 2403–2409.
  • Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 2005, 4, 145–160.
  • Srdić, V.V.; Mojić, B.; Nikolić, M.; Ognjanović, S. Recent progress on synthesis of ceramics core/shell nanostructures. Process Appl. Ceram. 2013, 7, 45–62.
  • Kim, D.; Jon, S. Gold nanoparticles in image-guided cancer therapy. Inorg. Chim. Acta. 2012, 393, 154–164.
  • Dyab, A.K.F.; Al-Lohedan, H.A.; Essawy, H.A.; El-Mageed, A.I.A.A.; Taha, F. Fabrication of core/shell hybrid organic–inorganic polymer microspheres via pickering emulsion polymerization using laponite nanoparticles. J. Saudi Chem. Soc. 2014, 18, 610–617.
  • Bae, J.; Park, J. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite for anode in lithium ion battery. Bull. Korean Chem. Soc. 2012, 33, 3025.
  • Elhalawany, N.; Saleeb, M.M.; Zahran, M.K. Novel anticorrosive emulsion-type paints containing organic/inorganic nanohybrid particles. Prog. Org. Coat. 2014, 77, 548–556.
  • Zhang, Y.; Luo, S.; Liu, S. Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach. Macromolecules 2005, 38, 9813–9820.
  • Wu, T.; Zhang, Y.; Wang, X.; Liu, S. Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem. Mater. 2008, 20, 101–109.
  • Daigle, J.-C.; Claverie, J.P. A simple method for forming hybrid core–shell nanoparticles suspended in water. J. Nanomater. 2008, 2008, 1–8.
  • Castrillón, M.; Mayoral, A.; Urtizberea, A.; Marquina, C.; Irusta, S.; Meier, J.G.; Santamaría, J. Synthesis and magnetic behavior of ultra-small bimetallic FeCo/graphite nanoparticles. Nanotechnology 2013, 24, 505702.
  • Liu, Y.; Ren, Z.; Wei, Y.; Jiang, B.; Feng, S.; Zhang, L.; Zhang, W.; Fu, H. Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. J. Mater. Chem. 2010, 20, 4802–4808.
  • Zhang, L.; Jing, H.; Boisvert, H.; He, J.Z.; Wang, H. Geometry control and optical tunability of metal-cuprous oxide core–shell nanoparticles. ACS Nano 2012, 6, 3514–3527.
  • Zhang, L.; Blom, D.A.; Wang, H. Au–Cu2O core–shell nanoparticles: A metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 2011, 23, 4587–4598.
  • Mélinon, P.; Begin-Colin, S.; Duvail, J.L.; Gauffre, F.; Boime, N.H.; Ledoux, G.; Plain, J.; Reiss, P.; Silly, F.; Warot-Fonrose, B. Engineered inorganic core/shell nanoparticles. Physics Rep. 2014, 543, 163–197.
  • Sinha, A.; Jana, N.R. Nanoparticle-incorporated functional mesoporous silica colloid for diverse applications. Eur. J. Inorg. Chem. 2012, 2012, 4470–4478.
  • Deshmukh, R.; Schubert, U. Synthesis of CuO and Cu3N nanoparticles in and on hollow silica spheres. Eur. J. Inorg. Chem. 2013, 2013, 2498–2504.
  • Mogyorósi, K.; Dékány, I.; Fendler, J.H. Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles. Langmuir 2003, 19, 2938–2946.
  • Sharma, G.; Jeevanandam, P. A facile synthesis of multifunctional iron oxide@Ag core–shell nanoparticles and their catalytic applications. Eur. J. Inorg. Chem. 2013, 2013, 6126–6136.
  • Varade, D.; Abe, H.; Yamauchi, Y.; Haraguchi, K. Superior CO catalytic oxidation on novel Pt/clay nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 11613–11617.
  • Ruhland, T.M.; Lang, J.R.V.; Alt, H.G.; Müller, A.H.E. Magnetic core–shell nanoparticles as carriers for olefin dimerization catalysts. Eur. J. Inorg. Chem. 2013, 2013, 2146–2153.
  • Salgueiriño-Maceira, V.; Correa-Duarte, M.A.; Spasova, M.; Liz-Marzán, L.M.; Farle, M. Composite silica spheres with magnetic and luminescent functionalities. Adv. Funct. Mater. 2006, 16, 509–514.
  • Ding, X.; Zhao, J.; Liu, Y.; Zhang, H.; Wang, Z. Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization. Mater. Lett. 2004, 58, 3126–3130.
  • Mandal, B.; Bhattacharjee, H.; Mittal, N.; Sah, H.; Balabathula, P.; Thoma, L.A.; Wood, G.C. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed. Nanotech. Biol. Med. 2013, 9, 474–491.
  • Liao, Q.; Qu, X.; Chen, L.; Jin, X. Aggregates of polymer-substituted fullerenes. J. Phys. Chem. B. 2006, 110, 7153–7158.
  • Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570–6597.
  • Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; and Hirsch, L. Organic semiconductor core–shell nanoparticles designed by successive solvent displacements. Mater. Horiz. 2014, 1, 431–438.
  • Arayne, M.S.; Sultana, N.; Noor-Us-Sabah. Fabrication of solid nanoparticles for drug delivery. Pak. J. Pharm. Sci. 2007, 20, 251–259.
  • Betke, A.; Kickelbick, G. Bottom–up, wet chemical technique for the continuous synthesis of inorganic nanoparticles. Inorganics 2014, 2, 1–15.
  • Russo, L.; Colangelo, F.; Cioffi, R.; Rea, I.; Stefano, L.D. A mechanochemical approach to porous silicon nanoparticles fabrication. Materials 2011, 4, 1023–1033.
  • Tsuzuki, T. Commercial scale production of inorganic nanoparticles. Int. J. Nanotechnol. 2009, 6, 567–578.
  • Tilley, R.D. Synthesis and applications of nanoparticles and quantum dots. Chem. N. Z. 2008, 30, 146–150.
  • Vayssieres, L. On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 2004, 1, 1–41.
  • Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.
  • Eastoe, J.; Hollamby, M.J.; Hudson, L. Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 2006, 128–130, 5–15.
  • Granqvist, C.G.; Kish, L.B.; Marlow, W.H. (Eds.) Gas Phase Nanoparticle Synthesis. Springer: Dordrecht, Netherlands, 2004, pp. 29–42.
  • Srdić, V.V.; Winterer, M.; Möller, A.; Miehe, G.; Hahn, H. Nanocrystalline zirconia surface-doped with alumina: Chemical vapor synthesis, characterization, and properties. J. Am. Ceram. Soc. 2001, 84, 2771–2776.
  • Tsuzuki, T.; McCormick, P.G. Mechanochemical synthesis of nanoparticles. J. Mater. Sci. 2004, 39, 5143–5149.
  • Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.
  • Thickett, S.C.; Gilbert, R.G. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer 2007, 48, 6965–6991.
  • Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009, 26, 1025–1058.
  • Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913.
  • Shariati, A.; Peters, C.J. Recent developments in particle design using supercritical fluids. Curr. Opin. Solid State Mater. Sci. 2003, 7, 371–383.
  • Lee, S.H.; Heng, D.; Ng, W.K.; Chan, H.-K.; Tan, R.B.H. Nano spray drying: A novel method for preparing protein nanoparticles for protein therapy. Int. J. Pharm. 2011, 403, 192–200.
  • López-Quintela, M.A. Synthesis of nanomaterials in microemulsions: Formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 2003, 8, 137–144.
  • Cason, J.P.; Miller, M.E.; Thompson, J.B.; Roberts, C.B. Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J. Phys. Chem. B 2001, 105, 2297–2302.
  • Ferrari, R.; Cingolani, A.; Moscatelli, D. Solvent effect in PLA-PEG based nanoparticles synthesis through surfactant free polymerization. Macromol. Symp. 2013, 324, 107–113.
  • Destrée, C.; Nagy, J.B. Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv. Colloid Interface Sci. 2006, 123–126, 353–367.
  • Lisiecki, I.; Pileni, M.P. Synthesis of well-defined and low size distribution cobalt nanocrystals: The limited influence of reverse micelles. Langmuir 2003, 19, 9486–9489.
  • Tojo, C.; de Dios, M.; Barroso, F. Surfactant effects on microemulsion-based nanoparticle synthesis. Materials 2011, 4, 55–72.
  • Mehta, S.K.; Kumar, S.; Chaudhary, S.; Bhasin, K.K. Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res. Lett. 2009, 4, 1197–1208.
  • Al-Kaysi, R.O.; Müller, A.M.; Ahn, T.-S.; Lee, S.; Bardeen, C.J. Effects of sonication on the size and crystallinity of stable zwitterionic organic nanoparticles formed by reprecipitation in water. Langmuir 2005, 21, 7990–7994.
  • Filankembo, A.; Giorgio, S.; Lisieki, I.; Pileni, M.P. Is the anion the major parameter in the shape control of nanocrystals? J. Phys. Chem. B 2003, 107, 7492–7500.
  • Pileni, M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2003, 2, 145–150.
  • Shi, H.; Magaye, R.; Castranova, V.; Zhao, J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre Toxicol. 2013, 10, 15.
  • Borm, P.J.A.; Kreyling, W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J. Nanosci. Nanotechnol. 2004, 4, 521–531.
  • Ogden, L.E. Nanoparticles in the environment: Tiny size, large consequences? BioScience 2013, 63, 236.
  • Chandran, A.; Francis, N.; Jose, T.; George, K.C. Synthesis, structural characterization and optical bandgap determination of ZnS nanoparticles. SB. Acad. Rev. 2010, 17, 17–21.
  • Soltani, N.; Gharibshahi, E.; Saion, E. Band gap of cubic and hexagonal CdS quantum dots-experimental and theoretical studies. Chalcogenide Lett. 2012, 9, 321–328.
  • Son, Y.; Park, M.; Son, Y.; Lee, J.-S.; Jang, J.-H.; Kim, Y.; Cho, J. Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries. Nano Lett. 2014, 14, 1005–1010.
  • Nairz, O.; Arndt, M.; Zeilinger, A. Experimental verification of the Heisenberg uncertainty principle for fullerene molecules. Phys. Rev. A 2002, 65, 032109.
  • Stephan, L.; Mostafa, A.E. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366.
  • Bigall, N.C.; Eychmüller, A. Synthesis of noble metal nanoparticles and their non-ordered superstructures. Phil. Trans. R. Soc. A 2010, 368, 1385–1404.
  • Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.
  • Gustav, M. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, Ann. Phys. 1908, 330, 377–445.
  • Agasti, N.; Kaushik, N.K. One pot synthesis of crystalline silver nanoparticles. Am. J. Nanomater. 2014, 2, 4–7.
  • Samsonov, V.M.; Sdobnyakov, N.Y.; Bazulev, A.N. On thermodynamic stability conditions for nanosized particles. Surf. Sci. 2003, 532–535, 526–530.
  • Hernández-Alonso, M.D.; Hungría, A.B.; Martínez-Arias, A.; Coronado, J.M.; Conesa, J.C.; Soria, J.; Fernández-García, M. Confinement effects in quasi-stoichiometric CeO2 nanoparticles. Phys. Chem. Chem. Phys. 2004, 6, 3524–3529.
  • Rozenberg, B.A.; Tenne, R. Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog. Polym. Sci. 2008, 33, 40–112.
  • Overney, R.M.; Buenviaje, C.; Luginbuhl, R.; Dinelli, F. Glass and structural transitions measured at polymer surfaces on the nanoscale. J. Therm. Anal. Calorimetr. 2000, 59, 205–225.
  • Aresti, M.; Saba, M.; Piras, R.; Marongiu, D.; Mula, G.; Quochi, F.; Mura, A.; Cannas, C.; Mureddu, M.; Ardu, A.; Ennas, G.; Calzia, V.; Mattoni, A.; Musinu, A.; Bongiovanni, G. Colloidal Bi2 S3 nanocrystals: Quantum size effects and midgap states. Adv. Funct. Mater. 2014, 24, 3341–3350.
  • El-Nour, K.M.M.A.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140.
  • Valek, R.; Hell, J. Impact properties of polymeric nanocomposites with different shape of nanoparticles. Brno. Czech. Republic 2011, 9, 21–23.
  • Zhou, C.; Peng, Z.; Jian-Hui, Z.; Zhen-Lin, W.; Wei-Yi, Z.; Nai-Ben, M. Preparation of silver-coated polystyrene composite particles. Chin. Phys. Lett. 2003, 20, 1369–1371.
  • Abdelrahman, A.I.; Dai, S.; Thickett, S.C.; Ornatsky, O.; Bandura, D.; Baranov, V.; Winnik, M.A. Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays. J. Am. Chem. Soc. 2009, 131, 15276–15278.
  • Abdelrahman, A.I.; Thickett, S.C.; Liang, Y.; Ornatsky, O.; Baranov, V.; Winnik, M.A. Surface functionalization methods to enhance bioconjugation in metal-labeled polystyrene particles. Macromolecules 2011, 44, 4801–4813.
  • Muñoz-Espí, R.; Dolcet, P.; Rossow, T.; Wagner, M.; Landfester, K.; Crespy, D. Tin(IV) oxide coatings from hybrid organotin/polymer nanoparticles. ACS Appl. Mater. Interfaces 2011, 3, 4292–4298.
  • Olada, A.; Hayasia, M. A comparative study of polystyrene/layered silicate nanocomposites, synthesized by emulsion and bulk polymerization methods. Polym. Plast. Technol. Eng. 2011, 50, 1487–1495.
  • Fan, J.; Liu, S.; Chen, G.; Qi, Z. SEM study of a polystyrene/clay nanocomposite. J. Appl. Polym. Sci. 2001, 83, 66–69.
  • Alsewailem, F.D.; Aljlil, S.A. Recycled polymer/clay composites for heavy-metals adsorption. Mater. Technol. 2013, 47, 525–529.
  • Istrate, O.M.; Chen, B. Enhancements of clay exfoliation in polymer nanocomposites using a chemical blowing agent. Polym. Int. 2014, 63, 2008–2016.
  • Kumar, S.; Rath, T.; Mahaling, R.N.; Das, C.K. Processing and characterization of carbon nanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline polymer. Compos. A Appl. Sci. Manufact. 2007, 38, 1304–1317.
  • Huang, J.; Li, Q.; Bao, Y.; Wu, C. Preparation of raspberry-like polystyrene/carbon black composite microsphere via π–π interactions. Coll. Polym. Sci. 2008, 287, 37–43.
  • Aly, A.A.; Mahmoud, M.M.; Omar, A.A. Enhancement in mechanical properties of polystyrene filled with carbon nano-particulates (CNPS). World J. Nano Sci. Eng. 2012, 2, 103–109.
  • Rabee, B.H.; Hashim, A. Synthesis and characterization of carbon nanotubes-polystyrene composites. Eur. J. Scient. Res. 2011, 60, 229–236.
  • Choi, H.J.; Zhang, K.; Lim, J.Y. Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. J. Nanosci. Nanotechnol. 2007, 7, 3400–3403.
  • Ibrahim, S.S. Low percolation behaviour of polystyrene carbon nanoparticles (PS/CNPs) composite. J. Mater. Environ. Sci. 2011, 2, 118–127.
  • Yu, J.; Lu, K.; Sourty, E.; Grossiord, N.; Koning, C.E.; Loos, J. Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 2007, 45, 2897–2903.
  • Sachdev, V.K.; Bhattacharya, S.; Patel, K.; Sharma, S.K.; Mehra, N.C.; Tandon, R.P. Electrical and EMI shielding characterization of multiwalled carbon nanotube/polystyrene composites. J. Appl. Polym. Sci. 2014, 131, 40201.
  • Erol, M.; Çelik, E. Graphite-flake carbon-black-reinforced polystyrene-matrix composite films. Mater. Technol. 2013, 47, 25–28.
  • Yang, J.; Wu, M.; Chen, F.; Fei, Z.; Zhong, M. Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J. Supercrit. Fluid 2011, 56, 201–207.
  • Xuemei, H.; Hao, Y. Fabrication of polystyrene/detonation nanographite composite microspheres with the core/shell structure via pickering emulsion polymerization. J. Nanomater. 2013, 2013, 1–8.
  • Park, W.; Hu, J.; Jauregui, L.A.; Ruan, X.; Chen, Y.P. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Appl. Phys. Lett. 2014, 104, 113101.
  • Wang, Q. Polymer nanocomposite: A promising flame retardant. J. Mater. Sci. Nanotechnol. 2013, 1, 1–2.
  • Gao, Y.; Wu, J.; Wang, Q.; Wilkie, C.A.; O’Hare, D. Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A. 2014, 2, 10996–11016.
  • Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.-M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125.
  • Kheireddin, B.A.; Lu, W.; Chen, I.-C.; Akbulut, M. Inorganic nanoparticle-based ionic liquid lubricants. Wear 2013, 303, 185–190.
  • Bakunin, V.N.; Suslov, A.Y.; Kuzmina, G.N.; Parenago, O.P.; Topchiev, A.V. Synthesis and application of inorganic nanoparticles as lubricant components—a review. J. Nanopart. Res. 2004, 6, 273–284.
  • Tomer, V.; Polizos, G.; Manias, E.; Randall, C.A. Epoxy-based nanocomposites for electrical energy storage. I: Effects of montmorillonite and barium titanate nanofillers. J. Appl. Phys. 2010, 108, 074116.
  • Kurahatti, R.V.; Surendranathan, A.O.; Kori, S.A.; Singh, N.; Kumar, A.V.R.; Srivastava, S. Defence applications of polymer nanocomposites. Defence Sci. J. 2010, 60, 551–563.
  • Goren, K.; Chen, L.; Schadler, L.S.; Ozisik, R. Influence of nanoparticle surface chemistry and size on supercritical carbondioxide processed nanocomposite foam morphology. J. Supercrit. Fluids 2010, 51, 420–427.
  • Jiang, L.; He, S.; Yang, D. Resistance to vacuum ultraviolet irradiation of nano-TiO2 modified carbon/ epoxy composites. J. Mater. Res. 2003, 18, 654–658.
  • Böhm, J.; Haußelt, J.; Henzi, P.; Litfin, K.; Hanemann, T. Tuning the refractive index of polymers for polymer waveguides using nanoscaled ceramics or organic dyes. Adv. Eng. Mater. 2004, 6, 52–57.
  • Chau, J.L.H.; Lin, Y.-M.; Li, A.-K.; Su, W.-F.; Chang, K.-S.; Hsu, S.L.-C.; Li, T.-L. Transparent high refractive index nanocomposite thin films. Mater. Lett. 2007, 61, 2908–2910.
  • Hameed, R.S.A.; Abu-Nawwas, A.-A.H.; Shehata, H.A. Nano-composite as corrosion inhibitors for steel alloys in different corrosive media. Adv. Appl. Sci. Res. 2013, 4, 126–129.
  • Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensor. Science 2000, 287, 622–625.
  • Zhang, N.; Yu, X.; Hu, J.; Xue, F.; Ding, E. Synthesis of silver nanoparticle-coated poly(styrene-co-sulfonic acid) hybrid materials and their application in surface-enhanced Raman scattering (SERS) tags. RSC Adv. 2013, 3, 13740–13747.
  • Zhang, N.; Yu, X.; Hu, J. Synthesis of copper nanoparticle-coated poly(styrene-co-sulfonic acid) hybrid materials and its antibacterial properties. Mater. Lett. 2014, 125, 120–123.
  • Zhao, Y.; Thorkelsson, K.; Mastroianni, A.J.; Schilling, T.; Luther, J.M.; Rancatore, B.J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Fréchet, J.M.J.; Alivisatos, A.P.; Xu, T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nature Mater. 2009, 8, 979–985.
  • Wang, H.; Sun, D.; Zhao, N.; Yang, X.; Shi, Y.; Li, J.; Su, Z.; Wei, G. Thermo-sensitive graphene oxide-polymer nanoparticle hybrids: synthesis, characterization, biocompatibility and drug delivery. J. Mater. Chem. B 2014, 2, 1362–1370.
  • Yu, Y.-H.; Lin, Y.-Y.; Lin, C.-H.; Chan, C.-C.; Huang, Y.-C. High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polym. Chem. 2014, 5, 535–550.
  • Youssef, A.M.; Malhat, F.A.; El-Hakim, A.F.A.A. Preparation and utilization of polystyrene nanocomposites based on TiO2 nanowires. Polym. Plast. Technol. Eng. 2013, 52, 228–235.
  • Hood, M.; Mari, M.; Muñoz-Espí, R. Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 2014, 7, 4057–4087.
  • Arun, P.S.; Sathish, S.; Narendhar, C. Fabrication of polystyrene composite reinforced with silicon carbide nanoparticles. Int. J. Curr. Engineer. Technol. 2014, 247–249.
  • Paul, T.C.; Morshed, A.K.M.M.; Khan, J.A. Nanoparticle enhanced ionic liquids (NEILS) as working fluid for the next generation solar collector. Procedia Eng. 2013, 56, 631–636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.