132
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical, Rheological, and Electrical Properties of Multiwalled Carbon Nanotube Reinforced Nanocomposites of 50/50 Acrylonitrile–Styrene–Acrylate/Zn+2 poly(ethylene-co-methacrylic acid) Ionomer Blend

, &

REFERENCES

  • Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204.
  • Wen, J.; Wilkes, G.L. Organic/inorganic hybrid network materials by the sol–gel approach. Chem. Mater. 1996, 8, 1667–1674.
  • Kawasumi, M. The discovery of polymer-clay hybrids. J. Polym. Sci. A: Polym. Chem. 2004, 42, 819–824.
  • Jeong, K.-U.; Lim, Y.J.; Lee, J.-Y.; Kang, L.S.; Nah, C. Polymer nanocomposites reinforced with multi-walled carbon nanotubes for semiconducting layers of high-voltage power cables. Polym. Int. 2010, 59, 100–106.
  • Kalgaonkar, A.R.; Jog, P.J. Copolyester nanocomposites based on carbon nanotubes, reinforcement effect of carbon nanotubes on viscoelastic and dielectric properties of nanocomposites. Polym. Int. 2008, 57, 114–123.
  • Datta, P.; Guha, C.; Sarkhel, G. Effect of Zn+2 poly(ethylene-co-methacrylic acid) ionomer on mechanical properties, thermal properties, morphology and process rheology of acrylonitrile styrene acrylate (ASA) terpolymer. Polym. Plast. Technol. Eng. 2014, 53, 80–89.
  • Datta, P.; Guha, C.; Sarkhel, G. Study of dynamic rheological, dynamic mechanical and creep properties of acrylonitrile styrene acrylate (ASA)/Zn+2poly(ethylene-co-methacrylic acid) ionomer blend. J. Macromol. Sci. Part A: Pure Appl. Chem. 2014, 51, 820–830.
  • Holiday, L. Ionic polymers. J. Polym. Sci. Polym. Lett. Ed. 1976, 14, 114–115.
  • Bazuin, C.G.; Eisenberg, A. Modification of polymer properties through ion incorporation. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 271–286.
  • MacKnight, W.J.; Earnest, T.R.J. The structure and properties of ionomers. Polym. Sci. Part D Macromol Rev. 2010, 16, 41–122.
  • Peiffer, D.G.; Hager, B.L.; Weiss, R.A.; Agarwal, P.K.; Lundberg, R.D. Far-IR studies of microphase separation in sulfonated ionomers. J. Polym. Sci. Polym. Phys. Edn. 1985, 23, 1869–1881.
  • Longworth, R.; Vaughan, D.J. Physical structure of ionomers. Nature 1968, 218, 85–87.
  • Datta, P.; Guha, C.; Sarkhel, G. Study of mechanical, thermal, morphological, and process rheology of acrylonitrile styrene acrylate (ASA)/Na+1 poly(ethylene-co-methacrylic acid) ionomer blend. Polym. Eng. Sci. 2015, 55(7), 1571–1579. doi:10.1002/pen.23998.
  • Datta, P.; Guha, C.; Sarkhel, G. Effect of Na-ionomer on dynamic rheological, dynamic mechanical and creep properties of acrylonitrile styrene acrylate (ASA)/Na+1 poly (ethylene-co-methacrylic acid) ionomer blend. Polym. Adv. Technol. 2014, 25, 1454–1463.
  • Martin, C.A.; Sandler, J.K.; Shaffer, M.S.; Schwarz, M.K.; Bauhofer, W.; Schulte, K.; Windle, A.H. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos. Sci. Technol. 2004, 64, 2309–2316.
  • Sandler, J.K.W.; Kirk, J.E.; Kinloch, I.A.; Shaffer, M.S.P.; Windle, A.H. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899.
  • Coleman, J.; Curran, S.; Dalton, A.; Davey, A.; McCarthy, B.; Blau, W.; Barklie, R.C.C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 1998, 58, R7492–R7495.
  • Park, C.; Ounaies, Z.; Watson, K.; Crooks, R.; Smith, J.Jr.; Lowther, S.; Connell, J.W.; Siochi, E.J.; Harrison, J.S.; St. Clair, T.L. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303–308.
  • Grady, B.P. Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol. Rapid Commun. 2010, 31, 247–257.
  • Suh, K.S.; Damon, D.; Tanaka, J. Space charge in polyethylene/ionomer blends. IEEE Trans. Dielectr. Electr. Insul. 1985, 2, 1–11.
  • www.sigmaaldrich.com/catalog/product/aldrich/724769?lang=en&region=IN (accessed October 17, 2014).
  • Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403.
  • Liu, T.X.; Phang, I.Y.; Shen, L.; Chow, S.Y.; Zhang, W.-D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004, 37, 7214–7222.
  • Marx, C.L.; Cooper, S.L. The crystallinity of ionomers. J. Macromol. Sci. Part B 1974, 9, 19–33.
  • Tsujita, Y.; Shibayama, K.; Takizawa, A.; Kinoshita, T.; Uematsu, I. Thermal properties of ethylene ionomers. J. Appl. Polym. Sci. 1987, 33(4), 1307–1314.
  • Kohzaki, M.; Tsujita, Y.; Takizawa, A.; Kinoshita, T. The crystallization and formation of cluster of ethylene ionomer during physical aging. J. Appl. Polym. Sci. 1987, 33, 2393–2402.
  • Kuwabara, K.; Horii, F. Solid-state NMR analyses of the crystalline-noncrystalline structure and its thermal changes for ethylene ionomers. J. Polym. Sci. Part B: Polym. Phys. 2002, 40, 1142–1153.
  • Kulkarni, H.P.; Mogilevsky, G.; Mullins, W.M.; Wu, Y. Mechanism of aging effects on viscoelasticity in ethylene-methacrylic acid ionomer studied by local thermal-mechanical analysis. J. Mater. Res. 2009, 24, 1087–1092.
  • Tadano, K.; Hirasawa, E.; Yamamoto, H.; Yano, S. Order-disorder transition of ionic clusters in ionomers. Macromolecules 1989, 22, 226–233.
  • Ray, A.K. Effects of chemical constituents on crystalline properties of ethylene ionomers. J. Therm. Anal. Calorim. 1996, 46, 1527–1539.
  • Akimoto, H.; Kanazawa, T.; Yamada, M.; Matsuda, S.; Shonaike, G.O.; Murakami, A. Impact fracture behavior of ethylene ionomer and structural change after stretching. J. Appl. Polym. Sci. 2001, 81, 1712–1720.
  • Kutsumizu, S.; Goto, M.; Yano, S. Electron spin resonance studies on sodium-neutralized ethylene ionomers: Microphase-separated structure and thermal behaviors. Macromolecules 2004, 37(13), 4821–4829.
  • Spencer, M.W.; Wetzel, M.D.; Troeltzsch, C.; Paul, D.R. Effects of acid neutralization on the properties of K+ and Na+ poly(ethylene-co-methacrylic acid) ionomers. Polymer 2012, 53, 569–580.
  • Rubinstein, M.; Colby, R.H. Polymer Physics, Oxford University Press: NY, 2003.
  • Yasuda, K. Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. Ph.D. Thesis. Massachusetts Institute of Technology. Dept. of Chemical Engineering, 1979.
  • Grunlan, J.C.; Mehrabi, A.R.; Bannon, M.V.; Bahr, J.L. Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 2004, 16, 150–153.
  • Grunlan, J.C.; Kim, Y.S.; Ziaee, S.; Wei, X.; Abdel-Magid, B.; Tao, K. Thermal and mechanical behavior of carbon-nanotube-filled latex. Macromol. Mater. Eng. 2006, 291, 1035–1043.
  • Mu, M.F.; Walker, A.M.; Torkelson, J.M.; Winey, K.I. Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 2008, 49, 1332–1337.
  • Grossiord, N.; Kivit, P.J.J.; Loos, J.; Meuldijk, J.; Kyrylyuk, A.V.; van der Schoot, P.; Koning, C.E. On the influence of the processing conditions on the performance of electrically conductive carbon nanotube/polymer nanocomposites. Polymer 2008, 49, 2866–2872.
  • Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652.
  • Blond, D.; McCarthy, D.N.; Blau, W.J.; Coleman, J.N. Toughening of artificial silk by incorporation of carbon nanotubes. Biomacromolecules 2007, 8, 3973–3976.
  • Coleman, J.N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K.P.; Belton, C.; Fonseca, A.; Nagy, J.B.; Gun’ko, Y.K.; Blau, W.J. High-performance nanotube-reinforced plastics, Understanding the mechanism of strength increase. Adv. Funct. Mater. 2004, 14, 791–798.
  • Lau, K.-T.; Hui, D. Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon 2002, 40, 1605–1606.
  • Harmon, J.P.; Muisener, P.A.O.; Clayton, L.; D’Angelo, J.; Sikder, A.K.; Kumar, A.; Meyyaooan, M.; Cassell, A.M. Ionizing radiation effects on interfaces in carbon nanotube-polymer composites, Symposium on Surface Engineering–Fundamentals and Applications Symposium, Boston, November 26–30, 2001.
  • Bubert, H.; Haiber, S.; Brandl, W.; Marginean, G.; Heintze, M.; Bruse, V. Characterization of the uppermost layer of plasma–treated carbon nanotubes. Diamond Relat. Mater. 2003, 12, 811–815.
  • Schadler, L.S.; Giannaris, S.C.; Ajayan, P.M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 1998, 73, 3842–3844.
  • Dorgan, J.R.; Knauss, D.M.; Al-Muallem, H.A.; Huang, T.; Vlassopoulos, D. Melt rheology of dendritically branched polystyrenes. Macromolecules 2003, 36, 380–388.
  • Blackwell, R.J.; Harlen, O.G.; McLeish, T.C.B. Theoretical linear and nonlinear rheology of symmetric treelike polymer melts. Macromolecules 2001, 34, 2579–2596.
  • Minko, S. Responsive polymer brushes. J. Macromol. Sci. Polym. Rev. 2006, 46, 397–420.
  • Kapnistos, M.; Vlassopoulos, D.; Roovers, J.; Leal, L.G. Linear rheology of architecturally complex macromolecules, Comb polymers with linear backbones. Macromolecules 2005, 38, 7852–7862.
  • Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics. Oxford University Press: NY, 1988.
  • Kapnistos, M.; Koutalas, G.; Hadjichristidis, N.; Roovers, J.; Lohse, D.J.; Vlassopoulos, D. Linear rheology of comb polymers with star-like backbones, melts and solutions. Rheol. Acta 2006, 46, 273–286.
  • Roovers, J.; Graessley, W.W. Melt rheology of some model comb polystyrenes. Macromolecules 1981, 14, 766–773.
  • Hodgson, D.F.; Amis, E.J. Dynamic viscoelasticity of dilute polyelectrolyte solutions. J. Chem. Phys. 1991, 94, 4581–4586.
  • Inkson, N.J.; Graham, R.S.; McLeish, T.C.B.; Groves, J.; Fernyhough, C.M. Viscoelasticity of monodisperse comb polymer melts. Macromolecules 2006, 39, 4217–4227.
  • Ueno, K.; Sano, Y.; Inaba, A.; Kondoh, M.; Watanabe, M. Soft glassy colloidal arrays in an ionic liquid, colloidal glass transition, ionic transport, and structural color in relation to microstructure. Phys. Chem. B 2010, 114, 13095–13103.
  • Wang, B.; Sun, G.; He, X.; Liu, J. The effect of multiwall carbon nanotube on the crystallization, morphology, and rheological properties of nylon1010 nanocomposites. Polym. Eng. Sci. 2007, 47, 1610–1620.
  • Sathyanarayana, S.; Olowojoba, G.; Weiss, P.; Caglar, B.; Pataki, B.; Mikonsaari, I.; Hübner, C.; Henning, F. Compounding of MWCNTs with PS in a twin-screw extruder with varying process parameters, morphology, interfacial behavior, thermal stability, rheology, and volume resistivity. Macromol. Mater. Eng. 2013, 298, 89–105.
  • Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679.
  • Bose, S.; Bhattacharyya, A.R.; Khare, R.A.; Kamath, S.S.; Kulkarni, A.R. The role of specific interaction and selective localization of multiwall carbon nanotubes on the electrical conductivity and phase morphology of multicomponent polymer blends. Polym. Eng. Sci. 2011, 51, 1987–2000.
  • Pötschke, P.; Dukin, S.M.; Alig, I. Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer 2003, 44, 5023–5030.
  • Dai, K.; Xu, X.B.; Li, Z.M. Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer 2007, 48, 849–859.
  • Dang, Z.M.; Shehzad, K.; Zha, J.W.; Mujahid, A.; Hussain, T.; Nie, J.; Shi, C.-Y. Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos. Sci. Technol. 2011, 72, 28–35.
  • Kilbride, B.E.; Coleman, J.N.; Fraysse, J.; Foumet, P.; Cadek, M.; Drury, A.; Hutzler, S.; Roth, S.; Blau, W.J. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer–carbon nanotube composite thin films. J. Appl. Phys. 2002, 92, 4024–4030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.