134
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Morphological, Dynamic Mechanical, Creep and Weathering Behavior of Carbon Nanotube-Reinforced 50/50 ASA/Zn-Ionomer Blend

, &

References

  • Hu, G.; Zhao, C.; Zhang, S.; Yang, M.; Wang, Z. Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 2006, 47, 480–488.
  • Jeong, K.-U.; Lim, Y.J.; Lee, J.-Y.; Kang, L.S.; Nah, C. Polymer nanocomposites reinforced with multi-walled carbon nanotubes for semiconducting layers of high-voltage power cables. Polym. Int. 2010, 59, 100–106.
  • Kalgaonkar, A.R.; Jog, P.J. Copolyester nanocomposites based on carbon nanotubes: Reinforcement effect of carbon nanotubes on viscoelastic and dielectric properties of nanocomposites. Polym. Int. 2008, 57, 114–123.
  • McKee, G.E.; Kistenmacher, A.; Goerrissen, H.; Breulmann, M. Synthesis, properties and applications of acrylonitrile-styrene-acrylate polymers. In: Scheirs, J.; Priddy, D.B., eds. Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers. John Wiley & Sons Ltd.: West Sussex, England, 2002, pp. 341–362.
  • Kamg, E.A.; Kim, J.H.; Oh, S.Y.; Rhee, W. The effects of PC-PMMA block copolymer on the compatibility and interfacial properties of PC/SAN blends. Polym. Eng. Sci. 2000, 40, 2374–2384.
  • Kim, W.N.; Burns, C.M. Thermal behavior, morphology, and some melt properties of blends of polycarbonate with poly (styrene-co-acrylonitrile) and poly (acrylonitrile–butadiene–styrene). Polym. Eng. Sci. 1988, 28, 1115–1125.
  • Liu, Z.; Deng, Y.; Han, Y.; Chen, M.; Sun, S.; Cao, C.; Zhou, C.; Zhang, H. Toughening of polyamide-6 with a maleic anhydride functionalized acrylonitrile-styrene-butyl acrylate copolymer. Ind. Eng. Chem. Res. 2012, 51, 9235–9240.
  • Seo, Y.S.; Kim, J.H.; Kim, C.K.; Lee, R.; Keum, J.K. Polycarbonate/acrylonitrile–styrene–acrylic elastomer terpolymer blends with enhanced interfacial adhesion and surface gloss. J. Appl. Polym. Sci. 2005, 96, 2097–2104.
  • Bazuin, C.G.; Eisenberg, A. Modification of polymer properties through ion incorporation. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 271–286.
  • MacKnight, W.J.; Earnest, T.R.J. The structure and properties of ionomers. Polym. Sci. Part D Macromol Rev. 2010, 16, 41–122.
  • Wu, S.; Guo, Q.; Kraska, M.; Stuhn, B.; Mai, Y.W. Toughening epoxy thermosets with block ionomers: The role of phase domain size. Macromolecules 2013, 46, 8190–8202.
  • Dolog, R.; Weiss, R.A. Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 2013, 46, 7845–7852.
  • Dong, J.; Weiss, R.A. Effect of crosslinking on shape-memory behavior of zinc stearate/ionomer compounds. Macromol. Chem. Phys. 2013, 214, 1238–1246.
  • Grande, A.M.; Castelnovo, L.; Landro, L.D.; Giacomuzzo, C.; Francesconi, A.; Rahman, M.A. Rate-dependent self-healing behavior of an ethylene-co-methacrylic acid ionomer under high-energy impact conditions. J. Appl. Polym. Sci. 2013, 130, 1949–1958.
  • Peiffer, D.G.; Hager, B.L.; Weiss, R.A.; Agarwal, P.K.; Lundberg, R.D. Far-IR studies of microphase separation in sulfonated ionomers. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 1869–1881.
  • Longworth, R.; Vaughan, D.J. Physical structure of ionomers. Nature 1968, 218, 85–87.
  • Datta, P.; Guha, C.; Sarkhel, G. Effect of Zn+2 poly(ethylene-co-methacrylic acid) ionomer on mechanical properties, thermal properties, morphology and process rheology of acrylonitrile styrene acrylate (ASA) terpolymer. Polym. Plast. Technol. Eng. 2014, 53, 80–89.
  • Datta, P.; Guha, C.; Sarkhel, G. Study of dynamic rheological, dynamic mechanical and creep properties of acrylonitrile styrene acrylate (ASA)/Zn+2poly(ethylene-co-methacrylic acid) ionomer blend. J. Macromol. Sci. Part A Pure Appl. Chem. 2014, 51, 820–830.
  • Datta, P.; Guha, C.; Sarkhel, G. Study of mechanical, thermal, morphological, and process rheology of acrylonitrile styrene acrylate (ASA)/ Na+1 poly(ethylene-co-methacrylic acid) ionomer blend. Polym. Eng. Sci. 2014, 55 (7), 1571–1579.
  • Datta, P.; Guha, C.; Sarkhel, G. Effect of Na-ionomer on dynamic rheological, dynamic mechanical and creep properties of acrylonitrile styrene acrylate (ASA)/Na+1 poly (ethylene-co-methacrylic acid) ionomer blend. Polym. Adv. Technol. 2014, 25, 1454–1463.
  • Grady, B.P. Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol. Rapid Commun. 2010, 31, 247–257.
  • Bose, S.; Oźdilek, C.; Leys, J.; Seo, J.W.; Wübbenhorst, M.; Vermant, J.; Moldenaers, P. Phase separation as a tool to control dispersion of multiwall carbon nanotubes in polymeric blends. ACS Appl. Mat. Interfaces 2010, 2 (3), 800–807.
  • Morlat-Therias, S.; Fanton, E.; Gardette, J.L.; Peeterbroeck, S.; Alexandre, M.; Dubois, P. Polymer/carbon nanotube nanocomposites: Influence of carbon nanotubes on EVA photodegradation. Polym. Degrad. Stab. 2007, 92, 1873–1882.
  • Grigoriadou, I.; Paraskevopoulos, K.M.; Chrissafis, K.; Pavlidou, E.; Stamkopoulos, T.G.; Bikiaris, D. Effect of different nanoparticles on HDPE UV stability. Polym. Degrad. Stab. 2011, 96, 151–163.
  • Datta, P.; Guha, C.; Sarkhel, G. Mechanical, rheological, and electrical properties of multiwalled carbon nanotube reinforced nanocomposites of 50/50 acrylonitrile styrene acrylate/ Zn+2 poly(ethylene-co-methacrylic acid) ionomer blend. Polym. Plast. Technol. Eng. 2015, 54 (16), 1753–1763. doi:10.1080/03602559.2015.1050516
  • Datta, P.; Guha, C.; Sarkhel, G. Mechanical, rheological, and electrical properties of multiwalled carbon nanotube reinforced ASA/Na-ionomer blend. J. Appl. Polym. Sci. 2015, 132 (36), 2516. doi:10.1002/APP.42516
  • Datta, P.; Guha, C.; Sarkhel, G. Thermal, dynamic mechanical, and creep behavior of carbon nanotube reinforced ASA/Na-ionomer blend. Polym. Adv. Technol. 2015, 26, 1294–1301. doi:10.1002/pat.3567
  • Suh, K.S.; Damon, D.; Tanaka, J. Space charge in polyethylene/ionomer blends. IEEE Trans. Dielectr. Electr. Insul. 1985, 2, 1–11.
  • Sigma-Aldrich.; Product, www.sigmaaldrich.com/catalog/product/aldrich/724769?lang=en&region=IN (accessed October 17, 2014).
  • Marx, C.L.; Cooper, S.L. The crystallinity of ionomers. J. Macromol. Sci. Part B 1974, 9, 19–33.
  • Tsujita, Y.; Shibayama, K.; Takizawa, A.; Kinoshita, T.; Uematsu, I. Thermal properties of ethylene ionomers. J. Appl. Polym. Sci. 1987, 33, 1307–1314.
  • Kohzaki, M.; Tsujita, Y.; Takizawa, A.; Kinoshita, T. The crystallization and formation of cluster of ethylene ionomer during physical aging. J. Appl. Polym. Sci. 1987, 33, 2393–2402.
  • Kuwabara, K.; Horii, F. Solid-state NMR analyses of the crystalline-noncrystalline structure and its thermal changes for ethylene ionomers. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1142–1153.
  • Kulkarni, H.P.; Mogilevsky, G.; Mullins, W.M.; Wu, Y. Mechanism of aging effects on viscoelasticity in ethylene-methacrylic acid ionomer studied by local thermal-mechanical analysis. J. Mater. Res. 2009, 24, 1087–1092.
  • Spencer, M.W.; Wetzel, M.D.; Troeltzsch, C.; Paul, D.R. Effects of acid neutralization on the properties of K+ and Na+ poly(ethylene-co-methacrylic acid) ionomers. Polymer 2012, 53, 569–580.
  • Tadano, K.; Hirasawa, E.; Yamamoto, H.; Yano, S. Order-disorder transition of ionic clusters in ionomers. Macromolecules 1989, 22, 226–233.
  • Ray, A.K. Effects of chemical constituents on crystalline properties of ethylene ionomers. J. Therm. Anal. Calorim. 1996, 46, 1527–1539.
  • Akimoto, H.; Kanazawa, T.; Yamada, M.; Matsuda, S.; Shonaike, G.O.; Murakami, A. Impact fracture behavior of ethylene ionomer and structural change after stretching. J. Appl. Polym. Sci. 2001, 81 (7), 1712–1720.
  • Kutsumizu, S.; Goto, M.; Yano, S. Electron spin resonance studies on sodium-neutralized ethylene ionomers: Microphase-separated structure and thermal behaviors. Macromolecules 2004, 37 (13), 4821–4829.
  • Yang, J.L.; Zhang, Z.; Schlarb, A.K.; Friedrich, K. On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part II: Modeling and prediction of long-term performance. Polymer 2006, 47, 6745–6758.
  • Ranade, A.; Nayak, K.; Fairbrother, D.; D’Souza, N.A. Maleated and non-maleated polyethylene–montmorillonite layered silicate blown films: Creep, dispersion and crystallinity. Polymer 2005, 46, 7323–7333.
  • Nakazato, Y.; Zhu, S.; Usuki, A.; Kato, M. Analysis and prediction of creep viscoelasticity in nylon 6 clay hybrid nanocomposites. J. Solid Mech. Mater. Eng. 2010, 4, 856–863.
  • Pérez, C.J.; Alvarez, V.A.; Vázquez, A. Creep behavior of layered silicate/starch-polycaprolactone blends nanocomposites. Mater. Sci. Eng. A 2008, 480, 259–265.
  • Findley, W.N.; Peterson, D.B. Prediction of long-time creep with ten-year creep data on four plastic laminates. Proc. ASTM 1958, 58, 841–853.
  • Shokuhfar, A.; Zare-Shahabadi, A.; Atai, A.-A.; Ebrahimi-Nejad, S.; Termeh, M. Predictive modeling of creep in polymer/layered silicate nanocomposites. Polym. Test. 2012, 31, 345–354.
  • Zhang, W.; Zhang, J.; Chen, S. Effect of core–shell structured modifier ACR on ASA/SAN/ACR ternary blends. J. Mater. Sci. 2012, 47, 5041–5048.
  • Suhr, J.; Koratkar, N.; Keblinski, P.; Ajayan, P. Viscoelasticity in carbon nanotubes composites. Nat. Mater. 2005, 4, 134–137.
  • Yu, M.F.; Yakobson, B.I.; Ruoff, R.S. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. B 2000, 104, 8764–8767.
  • Ye, X.; Pi, H.; Guo, S. A novel route for preparation of PVC sheets with high UV irradiation resistance. J. Appl. Polym. Sci. 2010, 117, 2899–2906.
  • Pi, H.; Chen, S.Q.; Guo, S.Y. Microstructure and properties development of impact-modified PVC during photoageing. Chem. J. Chin. Univ. 2009, 30, 1029–1034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.