859
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Influence of Graphite Filler on Physicochemical Characteristics of Polymer/Graphite Composites: A Review

, &

References

  • Rajkumar, K.; Kumari, N.; Ranjith, P.; Chakraborty, S.K.; Thavamani, P.; Pazhanisamy, P.; Jeyanthi, P. High temperature resistance properties of NBR based polymer nanocomposites. Int. J. Chem. Tech. Res. 2011, 3, 1343–48.
  • Debelak, B.; Lafdi, K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 2007, 45, 1727–1734.
  • Ahuja, T.; Kumar, D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B. 2009, 136, 275–286.
  • Nasir, A.; Kausar, A.; Younus, A. A review on preparation, properties and applications of polymeric nanoparticle-based materials. Polym. Plast. Technol. Eng. 2015, 54, 325–341.
  • Galpaya, D.; Wang, M.; Liu, M.; Motta, N.; Waclawik, E.; Yan, C. Recent Advances in Fabrication and Characterization of Graphene-Polymer Nanocomposites. Graphene. 2012, 1, 30–49.
  • Praveen, K.A.; Jackson, I.S.; Naviin, D. A Review on Importance and Recent Applications of Polymer Composites in Orthopaedics. Int. J. Engineer. Res. Develop. 2012, 5, 40–43.
  • Shiha, Y.F.; Wang, Y.T.; Jeng, R.J.; Wei, K.M. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy. Polym. Degrad. Stab. 2004, 86, 339–348.
  • Zhang, S.M.; Lin, L.; Deng, H.; Gao, X.; Bilotti, E.; Peijs, T.; Zhang, Q.; Fu, Q. Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Exp. Polym. Lett. 2012, 6, 159–168.
  • Ghose, S.; Watson, K.A.; Working, D.C.;Connell, J.W.; Smith, J.G.; Lin, Y.; Sun, Y.P. Thermal Conductivity Of Ethylene Vinyl Acetate Copolymer/Nanofiller Blends. Compos. Sci. Technol. 2008, 68, 1843–1853.
  • Zukas, T.; Jankauskaitė, V.; Zukienė, K.; Baltusnikas, A. The Influence Of Nanofillers On The Mechanical Properties Of Carbon Fibre Reinforced Methyl Methacrylate Composite. Mater. Sci 2012, 18, 250–255.
  • Kim, S.; Drzal, L.T. Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. J. Adhes. Sci. Technol. 2009, 23, 1623–1638.
  • Borriello, C.; Maria, A.D.; Jovic, N.; Montone, A.; Schwarz, M.; Antisari, M.V. Mechanochemical exfoliation of graphite and its polyvinyl alcohol nanocomposites with enhanced barrier properties. Mater. Manuf. Processes, 2009, 24, 1053–1057.
  • Wang, K.; Li, N. Facile exfoliation of graphite for preparation of polypropylene/ graphite nanocomposites. Soc. Plast. Engineer. 2014, doi:10.2417/spepro.005389.
  • Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803.
  • Han, X.; Zhang, Z. Experimental Nanomechanics Of one dimensional nano materials by in situ microscopy. Nano. 2007, 2, 249–271.
  • Mitura, S.; Mitura, K.; Niedzielski, P.; Louda, P.; Danilenko, V. Nanocrystalline diamond, its synthesis, properties and applications. J. Achiev. Mater. Manufact. Eng. 2006, 16, 9–16.
  • Falcao, E.H.L.; Wudl, F.; Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol. 2007, 82, 524–531.
  • Danilenko, V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State. 2004, 46, 595–599.
  • Boudou, J.P.; Curmi, P.A.; Jelezko, F.; Wrachtrup, J.; Aubert, P.; Sennour, M.; Balasubramanian, G.; Reuter, R.; Thorel, A.; Gaffet, E. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009, 20, 1–11.
  • Mochalin, V N; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotechnol. 2012, 7, 11–23.
  • Welz, S.; Gogotsi, Y.; McNallan, M.J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys. 2003, 93, 4207–4214.
  • Daulton, T.L.; Kirk, M; Lewis, R.; Rehn, L. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Inst. B. 2001, 175, 12–20.
  • Sattar, R.; Kausar, A.; Siddiq, M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. J. Plast. Film Sheet. 2015, 31, 186–224.
  • Jogi, B.F.; Sawant, M.; Kulkarni, M.; Brahmankar, P.K. Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: A Review. J. Encapsulat. Adsorpt. Sci. 2012, 2, 69–78.
  • Wang, X.; Bradford, P.D.; Liu, W.; Zhao, H.; Inoue, Y.; Maria, J.P.; Li, Q.; Yuan, F.G.; Zhu, Y. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos. Sci. Technol. 2011, 71, 1677–1683.
  • Sengupta, R.; Bhattacharya, M.; Bandyopadhyay, S.; Bhowmick, A.K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog. Polym. Sci. 2011, 36, 638–670.
  • Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.
  • Kim, H.; Abdala, A.A.; Macosko, C.W. Graphene/Polymer Nanocomposites. Macromolecules. 2010, 43, 6515–6530.
  • Fukushima, H.; Lee, S.H.; Drzal, L.T. Graphite platelet/Nylon nanocomposites. Annual Technical Conference - ANTEC, Conference Proceedings 2004, 2, 1441–1445.
  • Rajkumar, K.; Kumari, N.; Ranjith, P.; Chakraborty, S.K.; Thavamani, P.; Pazhanisamy, P.; Jeyanthi, P. High Temperature Resistance Properties of NBR Based Polymer Nanocomposites. Int. J. Chem. Tech. Res. 2011, 3, 1343–1348.
  • Sarikanat, M.; Sever, K.; Erbay, E.; Guner, F.; Tavman, I.; Turgut, A.; Seki, Y.; Ozdemir, I. Preparation and mechanical properties of graphite filled HDPE nanocomposites. Arch. Mat.sci eng. 2011, 50, 120–124.
  • Shives, G.; Smalc, M.; Chen, G.; Guggari, S.; Norley, J.; Reynolds, R.A. Thermal Performance Of Natural Graphite Heat Spreaders. ASME Proceedings Thermal Management of Electronic and Photonic Systems. 2005, 79–89.
  • Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere. J. Mater. Chem. 2004, 14, 1754–1758.
  • Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mat. Res. 2009, 2, 1–39.
  • Jin, S.; Xie, L.S.; Ma, Y.L.; Han, J.J.; Xia, Z.; Zhang, G.X.; Dong, S.M.; Wang, Y.Y. Low-temperature expanded graphite for preparation of graphene sheets by liquid phase Method. J. Phys Conferenc. Ser. 2009, 188, 1–7.
  • Jie, Z.; Yan-wen, Z.; Jun, H. Influence of graphite particle size and its shape on performance of carbon composite bipolar plate. J. Zhejiang Univ. Sci. 2005, 10, 1080–1083.
  • Xiao, M.; Sun, L.; Liu, J.; Li, Y.; Gong, K. Synthesis and Properties of Polystyrene/graphite nanocomposites. Polymer 2002, 43, 2245–2248.
  • George, J.J.; Bandyopadhyay, A.; Bhowmick, AK. New generation layered nanocomposites derived from ethylene-co-vinyl acetate and naturally occurring graphite. J Appl Polym Sci. 2008, 108, 1603–16.
  • Quan, H.; Zhang, B.Q.; Zhao, Q.; Yuen, R.K.K.; Li, R.K.Y. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Composites: Part A. 2009, 40, 1506–1513.
  • Tsai, J.L.; Tu, J.F. Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater. Design 2010, 31, 194–199.
  • Zheng, W.; Wong, S.C. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos. Sci. Technol. 2003, 63, 225–235.
  • Yasmin, A.; Luo, J.J.; Daniel, I.M. Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 2006, 66, 1182–1189.
  • Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Expanded graphite as superior anode for sodium-ion batteries. Nature Communicat. 2014, 5, doi:10.1038/ncomms5033.
  • Matsuo, Y.; Nishino, Y.; Fukutsuka, T.; Sugie, Y. Introduction of amino groups into the interlayer space of graphite oxide using 3-aminopr opylethoxysilanes. Carbon. 2007, 45, 1384–1390.
  • Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.
  • Zhu, J.; Chen, M.; Qu, H.; Zhang, X.; Wei, H.; Luo, Z.; Colorado, H.A.; Wei, S.; Guo, Z. Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energ y storage. Polymer. 2012, 53, 5953–5964.
  • Dresselhaus, M.S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1–186.
  • Du, X.S.; Xiao, M.; Meng, Y.Z. Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J. 2004, 40, 1489–1493.
  • Chen, G.H.; Wu, D.J.; Weng, W.G.; Yan, W.L. Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci. 2001, 82, 2506–2513.
  • Chen, G.H.; Wu, D.J.; Weng, W.G.; Yan, W.L. Dispersion of graphite nanosheets in a polymer matrix and the conducting properties of nanocomposites. Polym Eng Sci. 2001, 41, 2148–2154.
  • Dimiev, A.M.; Ceriotti, G.; Behabtu, N.; Zakhidov, D.; Pasquali, M.; Saito, R.; Tour, J.M. Direct real-time monitoring of stage transitions in graphite intercalation compounds. ACS Nano. 2013, 7, 2773–2780.
  • Inagaki, M. Applications of graphite intercalation compounds. J. Mater. Res. 1989, 4, 1560–1568.
  • Emery, N.; Herold, C.; Mareche, J.F.; Lagrange, P.; Bellouard, C.; Lamura, G.; Gennaro, E.D.; Andreone, A. Superconducting graphite intercalation compounds with calcium. Solid State Sci. 2008, 10, 466–470.
  • Weller, T.E.; Ellerby, M.; Saxena, S.S.; Smith, R.P.; Skipper, N.T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nat. Phys. 2005, 1, 39–41.
  • Zou, J.F.; Yu Z.Z.; Pan, Y.X.; Fang, X.P.; Ou, Y.C. Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J. Polym. Sci. B: Polym. Phys. 2002, 40, 954–963.
  • Lu, W.; Weng, J.; Wu, D.; Wu, C.; Chen, G. Epoxy resin/graphite electrically conductive nanosheet nanocomposite. Mater. Manuf. Processes. 2006, 21, 167–171.
  • Du, X.; Yu, Z-Z.; Dasari, A.; Ma, J.; Mo, M.; Meng, Y.; Mai Y-W. New method to prepare graphite nanocomposites. Chem. Mater. 2008, 20, 2066–2068.
  • Yasmin, A.; Daniel, I.M. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 2004, 45, 8211–8219.
  • Wakabayashi, K.; Brunner, P.J.; Masuda, J.; Hewlett, S.A.; Torkelson, J.M. Polypropylene-graphite nanocomposites made by solid-state shear pulverization: Effects of significantly exfoliated, unmodified graphite content on physical, mechanical and electrical properties. Polymer 2010, 51, 5525–5531.
  • Guohua, C.; Wengui, W.; Dajun, W.; Cuiling, W. PMMA/graphite nanosheets composite and its conducting properties. Eur. Polym. J. 2003, 39, 2329.
  • Alexandre, M.; Pluta, M.; Dubois, P.; Jerome, R. Metallocene catalyzed polymerization of ethylene in the presence of graphite, 1. synthesis and characterization of the composites. Macromol. Chem. Phys. 2001, 202, 2239–2246.
  • Montagna, L.S.; Fim, F.D.C.; Galland, G.B.; Basso, N.R.D.S. Synthesis of poly(propylene)/graphite nanocomposites by in situ polymerization, macromol. Symp. 2011, 299–300, 48–56.
  • Tavman, I.; Çeçen, V.; Ozdemir, I.; Turgut, A.; Krupa, I.; Omastova, M.; Novak, I. Preparation and characterization of highly electrically and thermally conductive polymeric nanocomposites. Arch. Mater. Sci. 2008, 29, 1–2.
  • Fzade, O.Y.; Hemmati, F.; Garmabi, H.; Mahdavi, M. Thermal behavior and electrical conductivity of ethylene vinyl acetate copolymer/expanded graphite nanocomposites: Effects of nanofiller size and loading. J. Vinyl Additiv. Technol. 2014, doi:10.1002/vnl.21428.
  • Kim, H.; Macosko, C.W. Morphology and Properties of polyester/exfoliated graphite nanocomposites. Macromolecules 2008, 41, 3317–3327.
  • She, Y.; Chen, G.; Wu, D. Fabrication of polyethylene/graphite nanocomposite from modified expanded graphite. Polym. Int. 2007, 56, 679–685.
  • Anandhan, S.; Bandyopadhyay, S. Polymer nanocomposites: from synthesis to applications nanocompos. Polym. Anal. Meth. 2011, doi:10.5772/17039.
  • Fim, F.D.C.; Guterres, J.M.; Basso, N.R.S.; Galland, G.B. Polyethylene/graphite nanocomposites obtained by in situ polymerization. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 692–698.
  • Das, T.K.; Prusty, S. Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 2013, 52, 319–331.
  • Chen, G.H.; Wu, D.J.; Weng, W.G.; He, B.; Yan, W.L. Preparation of polystyrene–graphite conducting nanocomposites via intercalation polymerization. Polym. Int. 2001, 50, 980–985.
  • Du, X.S.; Xiao, M.; Meng, Y.Z.; Hay, A.S. Synthesis and properties of poly(4,4′-oxybis(benzene)disulfide)/graphite nanocomposites via in-situ ring-opening polymerization of macrocyclic oligomers. Polymer 2004, 45, 6713–6718.
  • Bian, J.; Lin, H.L.; He, F.X.; Wang, L.; Wei, X.W.; Chang, I.T.; Sancaktar, E. Processing and assessment of high-performance poly(butylene terephthalate) nanocomposites reinforced with microwave exfoliated graphite oxide nanosheets. Eur. Polym. J. 2013, 49, 1406–1423.
  • Wu, H.; Sun, X.; Zhang, W.; Zhang, X.; Lu, C. Effect of solid-state shear milling on the physicochemical properties of thermally conductive low-temperature expandable graphite/low-density polyethylene composites. Composites: Part A. 2013, 55, 27–34.
  • Zhao, Y.F.; Xiao, M.; Wang, S.J.; Ge, X.C.; Meng, Y.Z. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos. Sci. Technol. 2007, 67, 2528–2534.
  • Cerezo, F.T.; Preston, C.M.L.; Shanks, R.A. Structural, mechanical and dielectric properties of poly(ethylene-co-methyl acrylate-co-acrylic acid) graphite oxide nanocomposites. Compos. Sci. Technol. 2007, 67, 79–91.
  • Kalaitzidou, K.; Fukushima, H.; Drzal, L.T. A route for polymer nanocomposites with engineered electrical conductivity and percolation threshold. Materials. 2010, 3, 1089–1103.
  • Nasir, A.; Kausar, A.; Younus, A. Polymer/graphite nanocomposites: physical features, fabrication and current relevance. Polym. Plast. Technol. Eng. 2015, 54, 750–770.
  • Srivastava, N.K.; Mehra, R.M. Study of the electrical properties of polystyrene–foliated graphite composite. Mater. Sci. -Pol. 2009, 27, 109–122.
  • Goyal, R.K.; Samant, S.D.; Thakar, A.K.; Kadam, A. Electrical properties of polymer/expanded graphite nanocomposites with low percolation. J. Phys. D: Appl. Phys. 2010, 43, 1–7.
  • Krupa, I.; Chodak, I. Physical properties of thermoplastic/graphite composites. Eur. Polym. J. 2001, 37, 2159–2168.
  • Goyal, R.K.; Jagadale, P.A.; Mulik, U.P. Thermal, mechanical, and dielectric properties of polystyrene/expanded graphite nanocomposites. J. Appl. Polym. Sci. 2009, 111, 2071–2077.
  • Zheng, W.; Lu, X.; Wong, S.C. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 2004, 91, 2781–2788.
  • Paszkiewicz, S.; Szymczyk, A.; Spitalsky, Z.; Soccio, M.; Mosnacek, J.; Ezquerra, T.A.; Rosłaniec, Z. Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by in situ polymerization. J. Polym. Sci., Part B: Polym. Phys. 2012, 50, 1645–1652.
  • Gagné, M.; Therriault, D. Lightning strike protection of composites. Prog. Aerospac. Sci. 2014, 64, 1–16.
  • Carotenuto, G.; Nicola, S.D.; Palomba, M.; Pullini, D.; Horsewell, A.; Hansen, T.W.; Nicolais L; Mechanical properties of low-density polyethylene filled by graphite nanoplatelets. Nanotechnology. 2012, 23, 1–8.
  • Kim, K.S.; Choi, K.E.; Park, S.J. Electrical and mechanical properties of graphite nanosheet/carbon nanotubes-filled epoxy nanocomposites. Carbon Lett. 2009, 10, 335–338.
  • Cho, J.; Chen, J.Y.; Daniel, I.M. Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement. Scripta Mater. 2007, 56, 685–688.
  • Tu, H.; Ye, L. Thermal conductive PS/graphite composites. Polym. Adv. Technol. 2009, 20, 21–27.
  • Higginbotham, A.L.; Lomeda, J.R.; Morgan, A.B.; Tour, J.M. Graphite oxide flame-retardant polymer nanocomposites. Appl. Mater. Interfac. 2009, 1, 2256–2261.
  • Tavman, I.; Çeçen, V.; Ozdemir, I.; Turgut, A.; Krupa, I.; Omastova, M.; Novak, I. Preparation and characterization of highly electrically and thermally conductive polymeric nanocomposites. Archiv. Mater. Sci. Engineer. 2009, 40, 84–88.
  • Wang, W.P.; Pan, C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 2004, 45, 3987–3995.
  • Chen, G.; Wu, C.; Weng, W.; Wu, D.; Yan, W. Preparation of polystyrene/graphite nanosheet composite. Polymer 2003, 44, 1781–1784.
  • Shahil, K.M.F.; Balandin, A.A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 2012, 152, 1331–1340.
  • Tantis, I.; Psarras, G.C.; Tasis, D. Functionalized graphene–poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. Exp. Polym. Lett 2012, 6, 283–292.
  • Kim, S.R.; Poostforush, M.; Kim, J.H.; Lee S.G. Thermal diffusivity of in-situ exfoliated graphite intercalated compound/polyamide and graphite/polyamide composites, Exp. Polym. Lett. 2012, 6, 476–484.
  • Vettegren, V.I.; Bashkarev, A.Y., Suslov, M.A. Thermal diffusivity of antifriction polymer composites. Tech. Phys. Lett. 2007, 33, 869–871.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. mater. Sci. 2011, 56, 1178–1271.
  • Cassagneau, T.; Fendler, J.H. High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv. Mater. 1998, 10, 877–881.
  • Calixto, C.M.F.; Mendes, R.; Oliveira, A.C.; Ramos, L.A.; Cervini, P.; Cavalheiro, E.T.G. Development of graphite-polymer composites as electrode materials. Mater. Res. 2007, 10, 109–114.
  • Rao, Y.S. Downward trimming of polymer thick film resistors through high voltage pulses. Int. J. Microcircuit. Electron. Pack. 2001, 24, 338–404.
  • Kim, H.; Veerappan, G.; Park, J.H. Conducting polymer coated non-woven graphite fiber film for dye-sensitized solar cells: superior Pt- and FTO-free counter electrodes. Electrochim. Acta 2014, 137, 164–168.
  • Lee, Y.L.; Shen, Y.J.; Yang, Y.M. A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications. Nanotechnology. 2008, 19, 455201.
  • Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Zhang, T. Application of polymer gel electrolyte with graphite powder in quasi-solid-state dye-sensitized solar cells. Polym. Compos. 2009, 30, 1687–1692.
  • Chi, C.H.; Hsu, Y.C.; Tseng, L.C.; Suen, S.Y.; Wu, J.Y.; Lee, R.H. Carbon nanotube and graphite oxide surfaces modified with polyethylene oxide for dye sensitized solar cells. J. Polym. Res. 2013, 20, 269.
  • Joo, J.; Epstein, A.J. Electromagnetic-radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 1994, 65, 2278–2280.
  • Goyal, R.K.; Kadam, A. Polyphenylene sulphide/graphite composites for EMI shielding applications. Adv. Mat. Lett. 2010, 1, 143–147.
  • Swain, S.K. Graphite reinforced polymer nanocomposites for conducting packaging applications. J. Material Sci. Eng. 2013, 2, 4.
  • Lou, J.; Wang, J. Nanomechanics and nanostructured multifunctional materials: experiments, theories, and simulations. J. Nanomater 2008, doi:10.1155/2008/782358.
  • Han, Y.; Wu, Y.; Shen, M.; Huang, X.; Zhu, J.; Zhang, X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J. Mater. Sci. 2013, 48, 4214–4222.
  • Kędzierski, M.; Jankowski, P.; Jaworska, G.; Niska, A. Graphite oxide as an intumescent flame retardant for polystyrene. Polimery. 2012, 57, 347–353.
  • Li, L.L.; Chen, S.H.; Ma, W.J.; Cheng, Y.H.; Tao, Y.P.; Wu, T.Z.; Chen, W.P.; Zhou, Z.; Zhu, M.F. A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide 6. Exp. Polym. Lett. 2014, 8, 450–457.
  • Dreyer, D.R.; Bielawski, C.W. Graphite oxide as an olefi n polymerization carbocatalyst: Applications in electrochemical double layer capacitors. Adv. Funct. Mater. 2012, 22, 3247–3253.
  • Larminie, J.; Dicks, A. Fuel Cell System Explained, 2nd Ed., John Wiley & Sons Ltd., Wiltshire, 2003.
  • Ghanbari, K.; Mousavi, M.F.; Shamsipur, M.; Karami, H. Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery. J. Power Sour. 2007, 170, 513–519.
  • Tajima, R.; Kagami, S.; Inaba, M.; Inoue, H. Development of soft and distributed tactile sensors and the application to humanoid robot. Adv. Robot. 2002, 16, 381–397.
  • Engel, J.; Chen, J.; Liu, C. Development of polyimide flexible tactile sensor skin. J. Micromech. Microengneer. 2003, 13, 359–366.
  • Someya, T; Sekitani, T; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Nat. Acad. Sci. USA. 2004, 101, 9966–9970.
  • Siegel, D.; Garabieta, I.; Hollerbach, J.M. An integrated tactile and thermal sensor. In Proceedings of the 3rd IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 1986, 1286–1291.
  • Engel, J.M.; Chen, J.; Bullen, D.; Liu, C. Polyurethane rubber as a MEMS material: Characterization and demonstration of an all-polymer two-axis hair cell flow sensor. In Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Miami, FL, USA, 2005, 279–282.
  • Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Nat. Acad. Sci. USA. 2005, 102, 12321–12325.
  • Shih, W.P.; Tsao, L.C.; Lee, C.W.; Cheng, M.Y.; Chang, C.; Yang, Y.J.; Fan, K.C. Flexible Temperature Sensor Array Based on a Graphite-Polydimethylsiloxane Composite. Sensors. 2010, 10, 3597–3610.
  • Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. Nature Mater. 2004, 3, 115–120.
  • Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol. Mater. Engineer. 2008, 293, 621–630.
  • Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.
  • Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 2008, 3, 270–274.
  • Blake, P.; Brimicombe, P.D.; Nair, R.R.; Booth, T.J.; Jiang, D.; Schedin, F.; Ponomarenko, L.A.; Morozov, S.V.; Gleeson, H.F.; Hill, E.W.; Geim, A.K.; Novoselov, K.S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.
  • Tung, V.C.; Chen, L.-M.; Allen, M.J.; Wassei, J.K.; Nelson, K.; Kaner, R.B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949–1955.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.