1,946
Views
93
CrossRef citations to date
0
Altmetric
Reviews

Toughening of Polylactic Acid: An Overview of Research Progress

, , &

References

  • Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835–864.
  • Vink, E.T.H.; Rabago, K.R.; Glassner, D.A.; Gruber, P.R. Application of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym. Degrad. Stab. 2003, 80, 403–419.
  • Bergsma, J.E.; De Bruijn, W.C.; Rozema, F.R.; Bos, R.R.M.; Boering, G. Late degradation tissue response to poly(l-lactide) bone plates and screws. Biomaterials 1995, 16, 25–31.
  • Ratner, B.D. Surface modification of polymers: Chemical, biological and surface analytical challenges. Biosens. Bioelectron. 1995, 10, 797–804.
  • Burg, K.J.L.; Holder, W.D.; Culberson, C.R.; Beiler, R.J.; Greene, K.G.; Loebsack, A.B.; Roland, W.D.; Mooney, D.J.; Halberstadt, C.R. Parameters affecting cellular adhesion to polylactide films. J. Biomater. Sci. Polym. Ed. 1999, 10, 147–161.
  • Reed, A.M.; Gilding, D.K. Biodegradable polymers for use in surgery poly(glycolic) Poly(lactic acid) homo- and copolymers: 2. In vitro degradation. Polymer 1981, 22, 494–498.
  • Pitt, C.G. Poly-ϵ-Caprolactone and its copolymers. In: Langer, R.; Chasin, M. eds., Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker: New York, 1990; pp. 71–120.
  • Lunt, J. Large-scale Production, Properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998, 59, 145–152.
  • Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501.
  • Anderson, K.S.; Schreck, K.M.; Hillmyer, M.A. Toughening polylactide. Polym. Rev. 2008, 48, 85–108.
  • Rasal, R.M.; Janorkar, A.V.; Hirta, D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356.
  • Liu, H.; Zhang, J. Research progress in toughening modification of poly(lactic acid). J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1051–1083.
  • Zeng, J.-B.; Li, K.-A.; Du, A.-K. Compatibilization strategies in poly(lactic acid)-based blends. RSC Adv. 2015, 5, 32546–32565. doi:10.1039/C5RA01655J
  • http://www.academia.edu/7742838/PolylacticAcidPLAMarket (accessed October 2014).
  • http://www.innorex.eu/detalle_noticia.php?no_id=3820 (accessed May 2015).
  • Utracki, L.A. Polymer Alloys and Blends. Hanser Gardner Publishers: New York, 1990.
  • Auras, R.; Lim, L.T.; Selke, S.E.M.; Tsuji, H. Synthesis, Structures, Properties, Processing and applications, Wiley: New York, 2010.
  • Wang, Y.; Hillmyer, M.A. Polyethylene-poly(L-lactide) diblock copolymers: Synthesis and compatibilization of poly(L-lactide)/polyethylene blends. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2755–2766.
  • Anderson, K.S.; Lim, S.H.; Hillmyer, M.A. Toughening of polylactide by melt blending with linear low-density polyethylene. J. Appl. Polym. Sci. 2003, 89, 3757–3768.
  • Kim, Y.F.; Choi, C.N.; Kim, Y.D.; Lee, K.Y.; Lee, M.S. Compatibilization of immiscible poly (L-lactide) and low density polyethylene blends. Fibers and Polym. 2004, 5, 270–274.
  • Anderson, K.S.; Hillmyer, M.A. The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 2004, 45, 8809–8823.
  • Machado, A.V.; Moura, I.; Duarte, F.M.; Botelho, G.; Nogueira, R.; Brito, A.G. Evaluation of properties and biodeterioration's potential of polyethylene and aliphatic polyesters blends. Int. Polym. Process. 2007, 5, 512–518.
  • Sinclair, R.G. US Patent 5 216 050, 1993.
  • Wojciechowska, E.; Fabia, J.; Slusarczyk, C.; Gawlowski, A.; Wysocki, M.; Graczyk, T. Fibres text. East. Eur. 2005, 13, 126–128.
  • Reddy, N.; Nama, D.; Yang, Y.Q. Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stab. 2008, 93, 233–241.
  • Biresaw, G.; Carriere, C.J. Interfacial tension of poly(lactic acid)/polystyrene blends. J. Polym. Sci., Part B 2002, 40, 2248–2258.
  • Sarazin, P.; Favis, B.D. Morphology control in co-continuous poly (L-lactide)/polystyrene blends: A route towards highly structured and interconnected porosity in poly(l-lactide) materials. Biomacromolecules 2003, 4, 1669–1679.
  • Biresaw, G.; Carriere, C.J. Compatibility and mechanical properties of blends of polystyrene with biodegradable polyesters. Compos. Part A. 2004, 35, 313–320.
  • Mohamed, A.; Gordon, S.H.; Biresaw, G. Poly(lactic acid)/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, and photoacoustic infrared spectroscopy. J. Appl. Polym. Sci. 2007, 106, 1689–1696.
  • Felker, F.C.; Biresaw, G. Rheology and morphology of extruded blends of polystyrene with biodegradable polyesters. J. Biobased Mater. Bioenergy 2007, 1, 401–408.
  • Lin, L.; Deng, C.; Lin, G.P.; Wang, Y.Z. Super toughened and high heat-resistant poly(lactic acid) PLA-based blends by enhancing interfacial bonding and PLA phase crystallization. Ind. Eng. Chem. Res. 2015, 54, 5643–5655. doi:10.1021/acs.iecr.5b011772015
  • Landry, M.R.; Massa, D.J.; Landry, C.J.T.; Teegarden, D.M.; Colby, R.H.; Long, T.E.; Henrichs, P.M. A survey of polyvinyl phenol blend miscibility. J. Appl. Polym. Sci. 1994, 54, 991–1011.
  • Hill, D.J.T.; Whittaker, A.K.; Wong, K.W. Miscibility and specific interactions in blends of poly(4-vinylphenol) and poly(2-ethoxyethyl methacrylate). Macromolecules 1999, 32, 5285–5291.
  • Kuo, S.W.; Chang, F.C. Effect of inert diluent segment on the miscibility behavior of poly(vinylphenol) with poly(acetoxystyrene) blends. J. Polym. Sci., Part B. 2002, 40, 1661–1672.
  • Zhang, L.L.; Goh, S.H.; Lee, S.Y. Miscibility and phase behavior of poly (D,L-lactide)/poly(p-vinylphenol) blends. J. Appl. Polym. Sci. 1998, 70, 811–816.
  • Meaurio, E.; Zuza, E.; Sarasua, J.R. Direct measurement of the enthalpy of mixing in miscible blends of poly(dl-lactide) with poly(vinylphenol). Macromolecules 2005, 38, 9221–9228.
  • Katada, A.; Buys, Y.F.; Tominaga, Y.; Asai, S.; Sumita, M. Relationship between electrical resistivity and particle dispersion state for carbon black filled poly(ethylene-co-vinyl acetate)/poly(L-lactic acid) blend. Colloid Polym. Sci. 2005, 284, 134–141.
  • Yoon, J.S.; Oh, S.H.; Kim, M.N.; Chin, I.J.; Kim, Y.H. Thermal and mechanical properties of poly (l-lactic acid)–poly (ethylene-co-vinyl acetate) blends. Polymer 1999, 40, 2303–2312.
  • Dollinger, H.M.; Sawan, S.P. In: Dunn, R.L.; Qttenbrite, R.M. eds., Polymer Drugs and Drug Delivery Systems, ACS: Washington, DC, 1991; p. 181.
  • Selke, S.E.M.; Culter, J.D.; Hernandez, R.J. Plastics Packaging, 2nd ed., Hanser Gardner Publications: Cincinnati, 2004.
  • Lee, C.M.; Kim, E.S.; Yoon, J.S. Reactive blending of poly(L-lactic acid) with poly(ethylene-co-vinyl alcohol). J. Appl. Polym. Sci. 2005, 98, 886–890.
  • Li, Y.J.; Shimizu, H. Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties. Eur. Polym. J. 2009, 45, 738–746.
  • Thomas, S.; Visakh, P.M.; Mathew, A.P. Advances in Natural Polymers: Composites and Nanocomposites. Springer: New York, 2013.
  • Jin, H.J.; Chin, I.J.; Kim, M.N.; Kim, S.H.; Yoon, J.S. Blending of poly(L-lactic acid) with poly(cis-1,4-isoprene). Eur. Polym. J. 2000, 36, 165–169.
  • http://www.iisrp.com/synthetic-rubber.html (accessed October 2009).
  • Juntuek, P.; Ruksakulpiwat, C.; Chumsamrong, P.; Ruksakulpiwat, Y. Glycidyl methacrylate grafted natural rubber: Synthesis, characterization, and mechanical property. J. Appl. Polym. Sci. 2011, 122, 3152–3159.
  • Huang, Y.; Zhang, C.; Pan, Y.; Wang, W.; Jiang, L.; Dan, Y. Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend. J. Polym. Environ. 2013, 21, 375–387.
  • Thepthawat, A.; Srikulkit, K. Properties improvement of poly(lactic acid) by blending with low mw poly(lactic acid)- g- natural rubber, Pure and Applied Chemistry International Conference (PACCON), January 23–25: Thailand, 2013.
  • Zhao, Q.; Ding, Y.; Yang, B.; Ning, N.; Fu, Q. Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid). Polym. Test. 2013, 32, 299–305.
  • Ishida, S.; Nagasaki, R.; Chino, K.; Dong, T.; Inoue, Y. Toughening of poly(L-lactide) by melt blending with rubbers. J. Appl. Polym. Sci. 2009, 113, 558–566.
  • Broz, M.E.; VanderHart, D.L.; Washburn, N.R. Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials 2003, 24, 4181–4190.
  • Nghia, P.T.; Siripitakchai, N.; Klinklai, W.; Saito, T.; Yamamoto, Y.; Kawahara, S. Compatibility of liquid deproteinized natural rubber having epoxy group (ledpnr)/poly (l-lactide) blend. J. Appl. Polym. Sci. 2008, 108, 393–399.
  • Li, S.-H.; Woo, E.M. Immiscibility–miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate). Polym. Int. 2008, 57, 1242–1251.
  • Le, K.P.; Lehman, R.; Remmert, J.; Vanness, K.; Ward, P.M.L.; Idol, J.D. Multiphase blends from poly(L-lactide) and poly(methyl mathacrylate). J. Biomater. Sci., Polym. Ed. 2006, 17, 121–137.
  • Yao, B.S.; Nawaby, A.V.; Liao, X.; Burk, R. Physical characteristics of PLLA/PMMA blends and their CO2 blowing foams. J. Cell. Plast. 2007, 43, 385–398.
  • Kumar, N.; Langer, R.S.; Domb, A.J. Polyanhydrides: An overview. Adv. Drug. Deliv. Rev. 2002, 54, 889–910.
  • Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798.
  • Suggs, L.J.; Moore, S.A.; Mikos, A.G. Synthetic biodegradable polymers for medical applications. In: Mark, J.E. ed., Physical Properties of Polymers Handbook, Springer: NewYork, 2007; pp. 944–945.
  • Clarinval, A.M.; Halleux, J. Themoplastic starch biodegradable polymers. In: Smith, R. ed., Biodegradable Polymers for Industrial Applications, CRC Press: Boca Raton, FL, 2005; 152–156.
  • Bohlmann, G.M. General characteristics, processability, industrial applications and market evolution of biodegradable polymers, In: Bastioli, C. ed., Handbook of Biodegradable Polymers, Rapra Technology: Shawbury, UK, 2005; 185–198.
  • Shuai, X.; He, Y.; Asakawa, N.; Inoue, Y. Miscibility and phase structure of binary blends of poly(L-lactide) and poly(vinyl alcohol). J. Appl. Polym. Sci. 2001, 81, 762–772.
  • Tsuji, H.; Muramatsu, H. Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). J. Appl. Polym. Sci. 2001, 81, 2151–2160.
  • Jawalkar, S.S.; Aminabhavi, T.M. Molecular modelling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly(l-lactide) and poly(vinyl alcohol) blends. Polymer 2006, 47, 8061–8071.
  • Lipsa, R.; Tudorachi, N.; Vasile, C. Poly (vinyl alcohol)/poly (lactic acid) blends biodegradable films doped with colloidal silver. Rev. Roum. Chim. 2008, 53, 405–413.
  • Gajria, A.M.; Dave, V.; Gross, R.A.; McCarthy, S.P. Miscibility and biodegradability of blends of poly (lactic acid) and poly (vinyl acetate). Polymer 1996, 37, 437–444.
  • Park, J.W.; Im, S.S. Miscibility and morphology in blends of poly(l-lactic acid) and poly(vinyl acetate-co-vinyl alcohol). Polymer 2003, 44, 4341–4354.
  • Selke, S.E.M. Plastics recycling and biodegradable, In: Harper, C.A. ed., Modern Plastics Handbook, McGraw-Hill: New York, 2000; pp. 95–96.
  • Pucciariello, R.; Tammaro, L.; Villani, V.; Vittoria, V. New nanohybrids of poly (ε-caprolactone) and a modified Mg/Al hydrotalcite: Mechanical and thermal properties. J. Polym. Sci. Part B, 2007, 45, 945–954.
  • Raquez, J.M.; Narayan, R.; Dubois, P. Recent Advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromol. Mater. Eng. 2008, 293, 447–470.
  • Newman, D.; Laredo, E.; Bello, A.; Grillo, A.; Feijoo, J.L.; Muller, A.J. Molecular mobilities in biodegradable poly(dl-lactide)/poly(ε-caprolactone) blends. Macromolecules 2009, 42, 5219–5225.
  • Sun, M.Z.; Downes, S.J. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair. J. Mater. Sci.: Mater. Med. 2009, 20, 1181–1192.
  • Yeh, J.T.; Wu, C.J.; Tsou, C.H.; Chai, W.L.; Chow, J.D.; Huang, C.Y.; Chen, K.N.; Wu, C.S. Study on the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends. Polym. Plast. Technol. Eng. 2009, 48, 571–578.
  • Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-ε-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm. 2004, 278, 1–23.
  • Xu, X.J.; Sy, J.C.; Shastri, V.P. Towards developing surface eroding poly(α-hydroxy acids). Biomaterials 2006, 27, 3021–3030.
  • Yu, L.; Dean, K.; Xu, Q. Generation of biodegradable polycaprolactone foams in supercritical carbon dioxide. In: Smith, R. ed., Biodegradable Polymers for Industrial Applications, CRC Press: Boca Raton, FL, 2005; pp. 474–491.
  • Wong, S.; Shanks, Y. Biocomposites of natural fibers and poly(3-hydroxybutyrate) and copolymers: Improved mechanical properties through compatibilization at the interface, In: Yu, L. ed. Biodegradable Polymer Blends and Composites from Renewable Resources, Wiley: Hoboken, NJ, 2009; pp. 320.
  • Chouzouri, G.; Xanthos, M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater. 2007, 3, 745–756.
  • Prabhakar, R.L.; Brocchini, S.; Knowles, J.C. Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass—Polycaprolactone composites. Biomaterials 2005, 26, 2209–2218.
  • Matsumura, S. Mechanism of biodegradation, In: Smith, R. ed., Biodegradable Polymers for Industrial Applications, CRC Press: Boca Raton, FL, 2005; 365–366.
  • Middleton, J.C.; Tipton, A.J. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000, 21, 2335–2346.
  • Wu, D.F.; Zhang, Y.S.; Zhang, M.; Yu, W. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10, 417–424.
  • Semba, T.; Kitagawa, K.; Ishiaku, U.S.; Kotaki, M.; Hamada, H. Effect of compounding procedure on mechanical properties and dispersed phase morphology of poly(lactic acid)/polycaprolactone blends containing peroxide. J. Appl. Polym. Sci. 2007, 103, 1066–1074.
  • Wu, D.F.; Zhang, Y.S.; Zhang, M.; Zhou, W.D. Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur. Polym. J. 2008, 44, 2171–2183.
  • Sabet, S.S.; Katbab, A.A. Interfacially compatibilized poly (lactic acid) and poly (lactic acid)/polycaprolactone/organoclay nanocomposites with improved biodegradability and barrier properties. J. Appl. Polym. Sci. 2009, 111, 1954–1963.
  • Todo, M.; Arakawa, K.; Tsuji, H.; Takenoshita, Y. Toughening mechanism of bioabsorbable PLA/PCL polymer blend. www.sem.org/proceedings/ConferencePapers, 2004.
  • Odent, J.; Leclere, P.; Raquez, J.M.; Dubois, P. Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur. Polym. J. 2013, 49, 914–922.
  • Liu, M.J.; Chen, S.C.; Yang, K.K.; Wang, Y.Z. Biodegradable polylactide based materials with improved crystallinity, mechanical properties and rheological behaviour by introducing a long-chain branched copolymer. RSC Adv. 2015, 5, 42162–42173.
  • Noda, I.; Satkowski, M.M.; Dowrey, A.E.; Marcott, C. Polymer alloys of nodax copolymers and poly(lactic acid). Macromol. Biosci. 2004, 4, 269–275.
  • Zhang, L.L.; Xiong, C.D.; Deng, X.M. Miscibility, crystallization and morphology of poly (β-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer 1996, 37, 235–241.
  • Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.M.; Noda, I.; Ochiai, S.; Ozaki, Y. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends. Polymer 2006, 47, 3132–3140.
  • Blumm, E.; Owen, A.J. Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/poly(l-lactide) blends. Polymer 1995, 36, 4077–4081.
  • Iannace, S.; Ambrosio, L.; Huang, S.J.; Nicolais, L. Poly(3-hydroxybutyrate)-co-(3-hydroxyvalerate)/Poly-L-lactide blends: Thermal and mechanical properties. J. Appl. Polym. Sci. 1994, 54, 1525–1535.
  • Koyama, N.; Doi, Y. Miscibility of binary blends of poly [(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polymer 1997, 38, 1589–1593.
  • Ohkoshi, I.; Abe, H.; Doi, Y. Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer 2000, 41, 5985–5992.
  • Furukawa, T.; Sato, H.; Murakami, R.; Zhang, J.M.; Noda, I.; Ochiai, S.; Ozaki, Y. Comparison of miscibility and structure of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(l-lactic acid) blends with those of poly(3-hydroxybutyrate)/poly(l-lactic acid) blends studied by wide angle X-ray diffraction, differential scanning calorimetry, and FTIR microspectroscopy. Polymer 2007, 48, 1749–1755.
  • Bartczak, Z.; Galeski, A.; Kowalczuk, M.; Sobota, M.; Malinowski, R. Tough blends of poly (lactide) and amorphous poly ([R, S]-3-hydroxy butyrate) – Morphology and properties. Eur. Polym. J. 2013, 49, 3630–3641.
  • Arrieta, M.P.; Castro-Lopez, M.D.M.; Rayon, E.; Barral-Losada, L.F.; Lopez-Vilarino, J.M.; Lopez, J.; Gonzalez-Rodriguez, M.V. Plasticized poly (lactic acid)–poly (hydroxybutyrate)(PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. J. Agric. Food Chem. 2014, 62, 10170–10180.
  • Armentano, I.; Fortunati, E.; Burgos, N.; Dominici, F.; Luzi, F.; Fiori, S.; Jimnez, A.; Yoon, K.; Ahn, J.; Kang, S.; Kenny, J.M. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym. Lett. 2015, 9, 583–596.
  • Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677–685.
  • Park, J.W.; Im, S.S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 2002, 86, 647–655.
  • Shibata, M.; Inoue, Y.; Miyoshi, M. Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate). Polymer 2006, 47, 3557–3564.
  • Bhatia, A.; Gupta, R.K.; Bhattacharya, S.N.; Choi, H.J. Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate)(PBS) blends for packaging application. Korea-Aust. Rheol. J. 2007, 19, 125–131.
  • Tamura, N.; Ban, K.; Takahashi, S.; Kasemura, T.; Obuchi, S. Application of poly (acetic acid)–based graft copolymer as a compatibilizer for poly (l-lactic acid)/poly (butylene succinate) blend system. J. Adhes. 2006, 82, 355–373.
  • Harada, M.; Ohya, T.; Iida, K.; Hayashi, H.; Hirano, K.; Fukuda, H. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci. 2007, 106, 1813–1820.
  • Wang, R.Y.; Wang, S.F.; Zhang, Y.; Wan, C.Y.; Ma, P.M. Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym. Eng. Sci. 2009, 49, 26–33.
  • Lee, S.; Lee, J.W. Characterization and processing of biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate). Korea-Aust. Rheol. J. 2005, 17, 71–77.
  • McCarthy, S.P.; Gross, R.A.; Ma, W. Polylactic acid polymer and copolymer with polyesters. U.S. Patent 5883199 A, 1999.
  • Ojijo, V.; Ray, S.S.; Sadiku, R. Toughening of biodegradable polylactide/poly (butylene succinate-co-adipate) blends via in situ reactive compatibilization. ACS Appl. Mater. Interfaces 2013, 5, 4266–4276.
  • Vilay, V.; Mariatti, M.; Ahmad, Z.; Pasomsouk, K.; Todo, M. Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate-co-L-lactate) polymeric blends. J. Appl. Polym. Sci. 2009, 114, 1784–1792.
  • Vannaladsaysy, V.; Todo, M.; Takayama, T.; Jaafar, M.; Ahmad, Z.; Pasomsouk, K. Effects of lysine triisocyanate on the mode I fracture behavior of polymer blend of poly (l-lactic acid) and poly (butylene succinate-co-l-lactate). J. Mater. Sci. 2009, 44, 3006–3009.
  • Wang, Y.; Chiao, S.M. Green polylactide blends for durable applications. Soc. Plast. Eng. 2013. doi:10.2417/spepro.004630
  • You, Y.; Youk, J.H.; Lee, S.W.; Min, B.M.; Lee, S.J.; Park, W.H. Preparation of porous ultrafine PGA fibers via selective dissolution of electrospun PGA/PLA blend fibers. Mater. Lett. 2006, 60, 757–760.
  • Pandey, A.; Pandey, G.C.; Aswath, P.B. Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation. J. Mech. Behav. Biomed. Mater. 2008, 1, 227–233.
  • You, Y.; Lee, S.W.; Youk, J.H.; Min, B.M.; Lee, S.J.; Park, W.H. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym. Degrad. Stab. 2005, 90, 441–448.
  • Zhang, N.W.; Wang, Q.F.; Ren, J.; Wang, L. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J. Mater. Sci. 2009, 44, 250–256.
  • Yuan, H.; Liu, Z.Y.; Ren, J. Preparation, characterization, and foaming behavior of poly (lactic acid)/poly (butylene adipate‐co‐butylene terephthalate) blend. Polym. Eng. Sci. 2009, 49, 1004–1012.
  • Jiang, L.; Wolcott, M.P.; Zhang, J.W. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207.
  • Ko, S.W.; Hong, M.K.; Park, B.J.; Gupta, R.K.; Choi, H.J.; Bhattacharya, S.N. Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym. Bull. 2009, 63, 125–134.
  • Ludvik, C.N.; Glenn, G.M.; Klamczynski, A.P.; Wood, D.F. Cellulose fiber/bentonite clay/biodegradable thermoplastic composites. J. Polym. Environ. 2007, 15, 251–257.
  • Ma, P.; Cai, X.; Zhang, Y.; Wang, S.; Dong, W.; Chen, M.; Lemstra, P.J. In-situ compatibilization of poly (lactic acid) and poly (butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator. Polym. Degrad. Stab. 2014, 102, 145–151.
  • Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102.
  • Al-Itry, R.; Lamnawar, K.; Maazouz, A.; Billon, N.; Combeaud, C. Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur. Polym. J. 2015, 68, 288–301.
  • Arruda, L.C.; Magaton, M.; Bretas, R.E.S.; Ueki, M.M. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym. Test. 2015, 43, 27–37.
  • Zhang, W.; Chen, L.; Zhang, Y. Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 2009, 50, 1311–1315.
  • Meng, Q.; Hu, J.; Ho, K.C.; Ji, F.; Chen, S. The shape memory properties of biodegradable chitosan/poly (l-lactide) composites. J. Polym. Environ. 2009, 17, 212–224.
  • Li, Y.J.; Shimizu, H. Improvement in toughness of poly (l-lactide)(PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties. Macromol. Biosci. 2009, 45, 738–746.
  • Dogan, S.K.; Reyes, E.A.; Rastogi, S.; Ozkoc, G. Reactive compatibilization of PLA/TPU blends with a diisocyanate. J. Appl. Polym. Sci. 2014, 131, 40251.
  • NatureWorks LLC Website. Technology focus report: Toughened PLA. Available at: www.natureworksllc.com/product and applications/ingeo-biopolymer/technical publications/_/media/Files/Toughened-PLA-Technology-Focuspdf.ashx.
  • Lai, S.M.; Lan, Y.C.; Wu, W.L.; Wang, Y.J. Compatibility improvement of poly (lactic acid)/thermoplastic polyurethane blends with 3‐aminopropyl triethoxy silane. J. Appl. Polym. Sci. 2015, 132, 42322.
  • Jing, X.; Mi, H.Y.; Peng, X.F.; Turng, L.S. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polym. Eng. Sci. 2015, 55, 70–80.
  • Li, X.R.; Su, Y.L.; Chen, Q.Y.; Lin, Y.; Tong, Y.J.; Li, Y.S. Synthesis and characterization of biodegradable hyperbranched poly(ester-amide)s based on natural material. Biomacromolecules 2005, 6, 3181–3188.
  • Lin, Y.; Zhang, K.Y.; Dong, Z.M.; Dong, L.S.; Li, Y.S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly (ester amide). Macromolecules 2007, 40, 6257–6267.
  • Zhang, W.; Zhang, Y.; Chen, Y.M. Modified brittle poly(lactic acid) by biodegradable hyperbranched poly(ester amide). Iran. Polym. J. 2008, 17, 891–898.
  • Cai, Q.; Bei, J.; Wang, S. In vitro study on the drug release behavior from Polylactide‐based blend matrices. Polym. Adv. Technol. 2002, 13, 534–540.
  • Hu, Y.; Hu, Y.S.; Topolkaraev, V.; Hiltner, A.; Baer, E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity. Polymer 2003, 44, 5711–5720.
  • Sheth, M.; Kumar, R.A.; Dave, V.; Gross, R.A.; McCarthy, S.P. Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J. Appl. Polym. Sci. 1997, 66, 1495–1505.
  • Feng, L.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly(ethylene glycol) based copolymers. Polym. Degrad. Stab. 2013, 98, 1591–1600.
  • Chen, B.Y.; Jing, X.; Mi, H.Y.; Zhao, H.; Zhang, W.H.; Peng, X.F.; Turng, L.S. Fabrication of polylactic acid/polyethylene glycol (PLA/PEG) porous scaffold by supercritical CO2 foaming and particle leaching. Polym. Eng. Sci. 2015, 55, 1339–1348.
  • Pluta, M.; Piorkowska, E. Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym. Test. 2015, 41, 209–218.
  • Bao, R.Y.; Jiang, W.R.; Liu, Z.Y.; Yang, W.; Xie, B.H.; Yang, M.B. Balanced strength and ductility improvement of in situ crosslinked polylactide/poly (ethylene terephthalate glycol) blends. RSC Adv. 2015, 5, 34821–34830.
  • Li, F.J.; Zhang, S.D.; Liang, J.Z.; Wang, J.Z. Effect of polyethylene glycol on the crystallization and impact properties of polylactide‐based blends. Polym. Adv. Technol. 2015, 26, 465–475.
  • Gaikwad, A.N.; Wood, E.R.; Ngai, T.; Lodge, T.P. Two calorimetric glass transitions in miscible blends containing poly (ethylene oxide). Macromol. 2008, 41, 2502–2508.
  • Ghosh, S.; Viana, J.C.; Reis, R.L.; Mano, J.F. Development of porous lamellar poly (l-lactic acid) scaffolds by conventional injection molding process. Acta Biomater. 2008, 4, 887–896.
  • Kim, K.S.; Chin, I.J.; Yoon, J.S.; Choi, H.J.; Lee, D.C.; Lee, K.H. Crystallization behavior and mechanical properties of poly (ethylene oxide)/poly (L‐lactide)/poly (vinyl acetate) blends. J. Appl. Polym. Sci. 2001, 82, 3618–3626.
  • Coraca, D.C.; Duek, E.A.R.; Padovani, C.A.; Camilli, J.A. Osteointegration of poly (l-lactic acid) PLLA and poly (l-lactic acid) PLLA/poly (ethylene oxide) PEO implants in rat tibiae. J. Mater. Sci.: Mater. Med. 2008, 19, 2699–2704.
  • Guner, F.S.; Yagci, Y.; Erciyes, A.T. Polymers from triglyceride oils. Prog. Polym. Sci. 2006, 31, 633–670.
  • Robertson, M.L.; Chang, K.; Gramlich, W.; Hillmyer, M.A. Toughening of polylactide with polymerized soybean oil. Macromolecules 2010, 43, 1807–1814.
  • Xu, Y.Q.; Qu, J.P. Mechanical and rheological properties of epoxidized soybean oil plasticized poly (lactic acid). J. Appl. Polym. Sci. 2009, 112, 3185–3191.
  • Biresaw, G.; Liu, Z.S.; Erhan, S.Z. Investigation of the surface properties of polymeric soaps obtained by ring‐opening polymerization of epoxidized soybean oil. J. Appl. Polym. Sci. 2008, 108, 1976–1985.
  • Ali, F.; Chang, Y.W.; Kang, S.C.; Yoon, J.Y. Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym. Bull. 2009, 62, 91–98.
  • Yuqiong, X.; Min, Y.; Jinping, Q. Melt rheology of poly (lactic acid) plasticized by epoxidized soybean oil. Wuhan Univ. J. Nat. Sci. 2009, 14, 349–354.
  • Xiong, Z.; Yang, Y.; Feng, J.X.; Zhang, X.M.; Zhang, C.Z.; Tang, Z.B.; Zhu, J. Preparation and characterization of polylactic acid/starch composites toughened with epoxidised soybean oil. Carbohydr. Polym. 2013, 92, 810–816.
  • Xiong, Z.; Zhang, L.S.; Ma, S.Q.; Yang, Y.; Zhang, C.Z.; Tang, Z.B.; Zhu, J. Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydr. Polym. 2013, 94, 235–243.
  • Xiong, Z.; Li, C.; Ma, S.; Feng, J.; Yang, Y.; Zhang, R.; Zhu, J. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydr. Polym. 2013, 95, 77–84.
  • Silverajah, V.S.G.; Ibrahim, N.A.; Zainuddin, N.; Yunus, W.M.Z.W.; Hassan, H.A. Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized olein blend. Molecules 2012, 17, 11729–11747.
  • Bishai, M.; De, S.; Adhikari, B.; Banerjee, R. A comprehensive study on enhanced characteristics of modified polylactic acid based versatile biopolymer. Eur. Polym. J. 2014, 54, 52–61.
  • Olabarrieta, I.; Gallstedt, M.; Ispizua, I.; Sarasua, J.R.; Hedenqvist, M.S. Properties of aged montmorillonite–wheat gluten composite films. J. Agric. Food Chem. 2006, 54, 1283–1288.
  • Mastromatteo, M.; Chillo, S.; Buonocore, G.G.; Massaro, A.; Conte, A.; Del Nobile, M.A. Effects of spelt and wheat bran on the performances of wheat gluten films. J. Food Eng. 2008, 88, 202–212.
  • Mohamed, A.A.; Gordon, S.H.; Carriere, C.J.; Kim, S.J. Thermal characteristics of polylactic acid/wheat gluten blends. J. Food Qual. 2006, 29, 266–281.
  • Swain, S.N.; Biswal, S.M.; Nanda, P.K.; Nayak, P.L. Biodegradable soy-based plastics: Opportunities and challenges. J. Polym. Environ. 2004, 12, 35–42.
  • Zhang, J.W.; Jiang, L.; Zhu, L.Y. Morphology and properties of soy protein and polylactide blends. Biomacromolecules 2006, 7, 1551–1561.
  • Fang, K.; Wang, B.B.; Sheng, K.C.; Sun, X.S. Properties and morphology of poly (lactic acid)/soy protein isolate blends. J. Appl. Polym. Sci. 2009, 114, 754–759.
  • Xu, C.G.; Luo, X.G.; Lin, X.Y.; Zhuo, X.R.; Liang, L.L. Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends. Polymer 2009, 50, 3698–3705.
  • http://www.edu-papers.com/tag/thermoplastic (accessed June 2, 2015).
  • Kim, H.S.; Kim, J.T.; Jung, Y.J.; Hwang, D.Y.; Son, H.J.; Lee, J.B.; Ryu, S.C.; Shin, S.H. Preparation and characterization of nanofibrous membranes of poly (D, L-lactic acid)/chitin blend for guided tissue regenerative barrier. Macromol. Res. 2009, 17, 682–687.
  • Suyatma, N.E.; Copinet, A.; Tighzert, L.; Coma, V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J. Polym. Environ. 2004, 12, 1–6.
  • Li, L.H.; Ding, S.; Zhou, C.R. Preparation and degradation of PLA/chitosan composite materials. J. Appl. Polym. Sci. 2004, 91, 274–277.
  • Correlo, V.M.; Boesel, L.F.; Bhattacharya, M.; Mano, J.F.; Neves, N.M.; Reis, R.L. Properties of melt processed chitosan and aliphatic polyester blends. Mater. Sci. Eng., A. 2005, 403, 57–68.
  • Correlo, V.M.; Pinho, E.D.; Pashkuleva, I.; Bhattacharya, M.; Neves, N.M.; Reis, R.L. Water absorption and degradation characteristics of chitosan‐based polyesters and hydroxyapatite composites. Macromol. Biosci. 2007, 7, 354–363.
  • Bie, P.; Liu, P.; Yu, L.; Li, X.; Chen, L.; Xie, F. The properties of antimicrobial films derived from Poly(lactic acid)/starch/chitosan blended matrix. Carbohydr. Polym. 2013, 98, 959–966.
  • Quiroz-Castillo, J.M.; Rodriguez-Felix, D.E.; Grijalva-Monteverde, H.; Lizarraga-Laborin, L.L.; Castillo-Ortega, M.M.; del Castillo-Castro, T.; Rodriguez-Felix, F.; Herrera-Franco, P.J. Preparation and characterization of films extruded of polyethylene/chitosan modified with poly (lactic acid). Mater. 2014, 8, 137–148.
  • Ke, T.; Sun, X. Melting behaviour and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 2003, 89, 1203–1210.
  • Wittaya, T. Rice starch-based biodegradable films: Properties enhancement. In: Eissa, A.A. ed., Structure and function of food engineering, Intech Publishers, Rijeka, Croatia, 2012, Chapter 5; pp. 103–134.
  • Zhang, J.F.; Sun, X. Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 2004, 94, 1697–1704.
  • Wang, H.; Sun, X.; Seib, P. Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 2002, 84, 1257–1262.
  • Yu, L.; Petinakis, E.; Liu, H.; Dean, K.; Yuan, Q. Enhancing compatibilizer function by controlled distribution in hydrophobic polylactic acid/hydrophilic starch blends. J. Appl. Polym. Sci. 2011, 119, 2189–2195.
  • Sarazin, P.; Li, G.; Orts, W.J.; Favis, B.D. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 2008, 49, 599–609.
  • Souza, R.; Andrade, C. Investigation of the gelatinization and extrusion processes of corn starch. Adv. Polym. Tech. 2002, 21, 17–24.
  • Stepto, R. The processing of starch as a thermoplastic. Macromol. Symp. 2003, 201, 201–212.
  • Da Roz, A.L.; Carvalho, A.J.F.; Gandini, A.; Curvelo, A.A.S. The effect of plasticizers on the thermoplastic starch compositions obtained by melt processing. Carbohydr. Polym. 2006, 63, 417–424.
  • Forssell, P.; Mikkila, J.; Suortti, T.; Seppala, J.; Poutanen, K. Plasticization of barley starch with glycerol and water. J. Macromol. Sci. – Pure Appl. Chem. 1996, 33, 703–715.
  • Graaf, R.; Karman, A.; Janssen, L. Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing. Starch 2003, 55, 80–86.
  • Ma, X.F.; Yu, J.G.; Wan, J.J. Urea and ethanolamine as a mixed plasticizer for thermoplastic starch. Carbohydr. Polym. 2006, 64, 267–273.
  • Teixeira, E.M.; Da Roz, A.L.; Carvalho, A.J.F.; Curvelo, A.A.S. The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydr. Polym. 2007, 69, 619–624.
  • Tang, S.W.; Zou, P.; Xiong, H.G.; Tang, H.L. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym. 2008, 72, 521–526.
  • Raquez, J.M.; Nabar, Y.; Srinivasan, M.; Shin, B.Y.; Narayanb, R.; Dubois, P. Maleated thermoplastic starch by reactive extrusion. Carbohydr. Polym. 2008, 74, 159–169.
  • Shirai, M.A.; Müller, C.M.O.; Grossmann, M.V.E.; Yamashita, F. Adipate and citrate esters as plasticizers for poly (lactic acid)/thermoplastic starch sheets. J. Polym. Environ. 2014, 23, 54–61.
  • Leadprathom, J.; Suttiruengwong, S.; Threepopnatkul, P.; Seadan, M. Compatibilized polylactic acid/thermoplastic starch by reactive blend. J. Met., Mater. Miner. 2010, 20, 87–90.
  • Teixeira, E.D.M.; Curvelo, A.A.; Correa, A.C.; Marconcini, J.M.; Glenn, G.M.; Mattoso, L.H. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind. Crops Prod. 2012, 37, 61–68.
  • Zhou, L.; Zhao, G.; Feng, Y.; Yin, J.; Jiang, W. Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: Influence of starch esterification degree. Carbohydr. Polym. 2015, 127, 79–85.
  • Yang, Y.; Tang, Z.; Xiong, Z.; Zhu, J. Preparation and characterization of thermoplastic starches and their blends with poly (lactic acid). Int. J. Biol. Macromol. 2015, 77, 273–279.
  • Arrieta, M.P.; Lopez, J.; Ferrandiz, S.; Peltzer, M.A. Characterization of PLA-limonene blends for food packaging applications. Polym. Test. 2013, 32, 760–768.
  • Ren, J.; Fu, H.; Ren, T.; Yuan, W. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly (lactic acid) and poly (butylene adipate-co-terephthalate). Carbohydr. Polym. 2009, 77, 576–582.
  • Detyothin, S.; Selke, S.E.; Narayan, R.; Rubino, M.; Auras, R.A. Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. J. Appl. Polym. Sci. 2015, 132, 42230.
  • Mittal, V.; Akhtar, T.; Matsko, N. Mechanical, thermal, rheological and morphological properties of binary and ternary blends of PLA, TPS and PCL. Macromol. Mater. Eng. 2015, 300, 423–435.
  • Ross, S.; Mahasaranon, S.; Ross, G.M. Ternary polymer blends based on poly (lactic acid): Effect of stereo‐regularity and molecular weight. J. Appl. Polym. Sci. 2015, 132, 41780.
  • Mohanty, A.K.; Drzal, L.T.; Misra, M. Nano reinforcements of bio-based polymers the hope and the reality. Polym. Mater. Sci. Eng. 2003, 88, 60–61.
  • Mohanty, A.K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000, 276, 1–24.
  • Hiroi, R.; Sinha Ray, S.; Okamoto, M.; Shiroi, T. Organically modified layered titanate: a new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rapid Commun. 2004, 25, 1359–1364.
  • Mark, J.E. Some novel polymeric nanocomposites. Acc. Chem. Res. 2006, 39, 881–888.
  • Nishida, H.; Fan, Y.; Mori, T.; Oyagi, N.; Shirai, Y.; Endo, T. Feedstock recycling of flame-resisting poly (lactic acid)/aluminum hydroxide composite to l, l-lactide. Ind. Eng. Chem. Res. 2005, 44, 1433–1437.
  • Kim, H.W.; Lee, H.H.; Knowles, J.C. Electrospinning biomedical nanocomposite fibers of hydroxyapatite/poly (lactic acid) for bone regeneration. J. Biomed. Mater. Res. 2006, 79A, 643–649.
  • Nazhat, S.N.; Kellomaki, M.; Tormala, P.; Tanner, K.E.; Bonfield, W.; Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J. Biomed. Mater. Res. 2001, 58, 335–343.
  • Ogata, N.; Jimenez, G.; Kawai, H.; Ogihara, T. Structure and thermal/mechanical properties of poly(l-lactide)–clay blend. J. Polym. Sci., Part B 1997, 35, 389–396.
  • Bandyopadhyay, S.; Chen, R.; Giannelis, E.P. Biodegradable organic inorganic hybrids based on poly (l-lactic acid). Polym. Mater. Sci. Eng. 1999, 81, 159.
  • Sinha Ray, S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Macromolecules 2002, 35, 3104–3110.
  • Ray, S.S.; Okamoto, K.; Yamada, K.; Okamoto, M. Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Nano Lett. 2002, 2, 423–425.
  • Sinha Ray, S.; Yamada, K.; Okamoto, M.; Ogami, A.; Ueda, K. New polylactide/layered silicate nanocomposites. 3. High performance biodegradable materials. Chem. Mater. 2003, 15, 1456–1465.
  • Lee, J.H.; Park, T.G.; Park, H.S.; Lee, D.S.; Lee, Y.K.; Yoon, S.C.; Nam, J.D. Thermal and mechanical characteristics of poly(l-lactic acid) nanocomposite scaffold. Biomaterials 2003, 24, 2773–2778.
  • Zhang, X.F.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.C.; Hauge, R.H.; Smalley, R.E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288.
  • Xie, X.L.; Mai, Y.W.; Zhou, X.P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. Rep. 2005, 49, 89–112.
  • Sinha Ray, S.; Bousmina, M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005, 50, 962–1079.
  • Liu, J.; Zhou, K.; Wen, P.; Wang, B.; Hu, Y.; Gui, Z. The influence of multiple modified MMT on the thermal and fire behavior of poly (lactic acid) nanocomposites. Polym. Adv. Technol. 2015, 26, 626–634.
  • Chen, G.X.; Yoon, J.S. Morphology and thermal properties of poly(L-lactide)/poly(butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci., Part B. 2005, 43, 478–487.
  • Wang, R.Y.; Wang, S.F.; Zhang, Y. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J. Appl. Polym. Sci. 2009, 113, 3095–3102.
  • Wang, R.Y.; Wang, S.F.; Zhang, Y. Morphology, mechanical properties, and thermal stability of poly(L-lactic acid)/poly(butylene succinate-co-adipate)/silicon dioxide composites. J. Appl. Polym. Sci. 2009, 113, 3630–3637.
  • Ojijo, V.; Ray, S.; Sadiku, R. Concurrent enhancement of multiple properties in reactively processed nanocomposites of polylactide/poly [(butylene succinate)‐co‐adipate] blend and organoclay. Macromol. Mater. Eng. 2014, 299, 596–608.
  • Jiang, L.; Liu, B.; Zhang, J.W. Properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/nanoparticle ternary composites. Ind. Eng. Chem. Res. 2009, 48, 7594–7602.
  • Lai, S.M.; Wu, S.H.; Lin, G.G.; Don, T.M. Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites. Euro. Polym. J. 2014, 52, 193–206.
  • Eng, C.C.; Ibrahim, N.A.; Zainuddin, N.; Ariffin, H.; Yunus, W.M.Z.W.; Then, Y.Y. Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. Int. J. Polym. Sci. 2014, 1–8. Article ID 715801.
  • Chen, C.; Lv, G.; Pan, C.; Song, M.; Wu, C.; Guo, D.; Wang, X.; Chen, B.; Gu, Z. Poly(lactic acid) (PLA) based nanocomposites—A novel way of drug-releasing. Biomed. Mater. 2007, 2, L1–L4.
  • Jo, Y.S.; Kim, M.C.; Kim, D.K.; Kim, C.J.; Jeong, Y.K.; Kim, K.J.; Muhammed, M. Mathematical modelling on the controlled-release of indomethacin-encapsulated poly(lactic acid-co-ethylene oxide) nanospheres. Nanotechnology 2004, 15, 1186–1194.
  • Sakata, S.; Kei, T.; Uchida, K.; Kaetsu, I. Nano-particle of hydrophobic poly lactic acid for DDS. Polym. Preprints Japan. 2006, 55, 2074.
  • Guan, Q.; Naguib, H.E. Fabrication and characterization of PLA/PHBV-chitin nanocomposites and their foams. J. Polym. Environ. 2014, 22, 119–130.
  • Zhang, Q.; Wei, S.; Huang, J.; Feng, J.; Chang, P.R. Effect of surface acetylated‐chitin nanocrystals on structure and mechanical properties of poly (lactic acid). J. Appl. Polym. Sci. 2014, 131, 39809.
  • http://www.innorex.eu/detalle_oferta_demanda.php?of_id=78 (accessed 27 May 2015).
  • http://www.packagingeurope.com/Packaging-Europe-News/60002/Bioplastics-Opportunities-and-Challenges-.html (accessed June 1).
  • Drzal, L.; Mohanty, A.; Rook, B.; Misra, M. Environmentally friendly polylactide-based biocomposite materials for flooring – 020043 Patent - MSU Technologies.http://msut.technologypublisher.com/technology/6096
  • Sterling, J.B.; Hanke, C.W. Poly-l-lactic acid as a facial filler laser and skin surgery center of indiana, Carmel, IN, USA, 2005, www.skintherapyletter.com/2005/10.5/2.html.
  • Arunkumar, R.; Prashanth, K.V.; Manabe, Y.; Hirata, T.; Sugawara, T.; Dharmesh, S.M.; Baskaran, V. Biodegradable poly (lactic-co-glycolic acid)-polyethylene glycol nanocapsules: An efficient carrier for improved solubility, bioavailability, and anticancer property of lutein. J. Pharm. Sci. 2015, 104, 2085–2093.
  • Bioplastics for Electronic Equipment - NEC Corporation. www.nec.com/en/global/rd/innovative/bioplastics/04.html (accessed 26 December 2013).
  • Wolf, O. Techno-economic feasibility of large-scale production of bio-based polymers in Europe. Eur. Communities 2005, 50–64.
  • Labrecque, L.V.; Kumar, R.A.; Dave, V.; Gross, R.A.; McCarthy, S.P. Citrate esters as plasticizers for poly (lactic acid). J. Appl. Polym. Sci. 1997, 66, 1507–1513.
  • Ljungberg, N.; Colombini, D.; Wesslen, B. Plasticization of poly(lactic acid) with oligomeric malonate esteramides: Dynamic mechanical and thermal film properties. J. Appl. Polym. Sci. 2005, 96, 992–1002.
  • Li, B.H.; Yang, M.C. Improvement of thermal and mechanical properties of poly (L-lactic acid) with 4, 4-methylene diphenyl diisocyanate. Polym. Adv. Technol. 2006, 17, 439–443.
  • Li, H.; Huneault, M.A. Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer 2007, 48, 6855–6866.
  • Jing, F.; Hillmyer, M.A.A. Bifunctional monomer derived from lactide for toughening polylactide. J. Am. Chem. Soc. 2008, 130, 13826–13827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.