921
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Research Progress on Properties and Applications of Polymer/Clay Nanocomposite

, , &

References

  • Brigatti, M.F.; Galan, E. Structure and mineralogy of clay minerals. In Bergaya, F.; Lagaly, G. ed. Handbook of Clay Science, 2nd ed., Elsevier Ltd.: Amsterdam, 2013, vol. 5, pp.20–81.
  • Bergaya, F.; Lagaly, G.; Vayer, M. Cation and anion exchange. In Bergaya, F.; Lagaly, G. ed. Handbook of Clay Science, 2nd ed., Elsevier Ltd.: Elsevier, 2013, vol. 5, pp. 333–359.
  • Post, J.L.; Crawford, S.M. Uses of near infra-red spectra for the identification of clay minerals. Appl. Clay Sci. 2014, 95, 383–387.
  • Morgan, A.B. Polymer-clay nanocomposites: Design and application of multi-functional materials. Mate Matter 2011, 2, 1–6.
  • Bergaya, F.; Jaber, M.; Lambert, J.-F. Organophillic clay minerals, rubber clay nanocomposites. Science, Technology and Applications, John Willey and Sons: Hoboken, NJ, 2011, vol. 2, pp. 45–86.
  • Bouberka, Z.; Khenifi, A.; Ait Mahmed, H; Haddou, B.; Belkaid, N.; Bettahar, N.; derriche, Z. Adsorption of supranol yellow 4GL from aqueous solution by surfactant treated bentonite. J. Hazard. Mater. 2009, 162, 378–385.
  • Obaje, S.O.; Omada, J.I.; Dambatta, U.A. Clays and their industrial applications: Synoptic review. Int. J. Sci. Technol. 2013, 3, 264–270.
  • Faheem, U. Clays, nanoclays, and montmorillonite minerals. J. Metall. Mater. Trans. A. 2008, 39, 2804–2814.
  • Bergaya, F.; Theng, B.K.G.; Lagaly G. General introduction: clays, clay minerals and clay science. In: Bergaya, F.; Lagaly, G. ed. Hand Book of Clay Science, 1st ed., Elsevier Ltd.: Amsterdam, 2006, vol. 1, pp. 08–09.
  • Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204.
  • Jatav, G.K.; Mukhopadhyay, R.; De, N. Characterization of swelling behaviour of nanoclay composite. Int. J. Innovat. Res. Sci. Engineer. Technol. 2013, 2, 1560–1563.
  • Batra, M.; Gotam, S.; Dadarwal, P. Nano-clay as polymer porosity reducer: A review. J. Pharmaceut. Sci. Technol. 2011, 3, 709–716.
  • Manocha, S.; Patel, N.; Manocha, L.M. Development and characterisation of nanoclays from Indian clays. Defen. Sci. J. 2008, 58, 517–524.
  • He, H.P.; Ma, Y.H.; Zhu, J.X.; Yuan, P.; Qing, Y.H. Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration. Appl. Clay Sci. 2010, 48, 67–72.
  • He, H.; Ma, L.; Zhu, J.; Frost, R.L.; Theng. B.K.G.; Bergaya, F. Synthesis of organoclays: A critical review and some unresolved issues. Appl. Clay Sci. 2014, 100, 22–28.
  • Hartstock, N.J.; Mueller, T.G.; Thomas, G.W.; Barnhisel, R.I.; Wells, K.L.; Shearer, S.A. Soil electrical conductivity variability. In Robert, P.C. et al., Int. Proc. 5th Int. Conf. on Precision Agriculture, Madison, 2000.
  • Scudiero, E.; Berti, A.; Teatini, P.; Francesco, M. Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe. Sensors 2012, 12, 17588–17607.
  • De Jong, E.; Ballantyne, A.K.; Cameron, D.R.; Read, D.W.L. Measurement of apparent electrical conductivity of soils by an electromagnetic induction probe to aid in salinity surveys. Soil Sci. Soc. Am. J. 1979, 43, 810–812.
  • Rao, Y.; Blanton, T.N. Polymer nanocomposites with a low thermal expansion coefficient. J. Macromolecules 2008, 41, 935–941.
  • Geyer, B.; Hundshammer, T.; Röhner, S.; Lorenz, G.; Kandelbauer, A. Predicting thermal and thermo-oxidative stability of silane-modified clay minerals using thermogravimetry and isoconversional kinetic analysis. Appl. Clay Sci. 2014, 101, 253–259.
  • Schoonheydt, R.A.; Johnson, C.T. Surface and interface chemistry of clay minerals. In Bergaya, F.; Lagaly, G. ed. Hand Book of Clay Science, 1st ed., Elsevier Ltd.: Amsterdam, 2006, vol. 1, pp. 87–96.
  • Kiliaris, P.; Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958.
  • Sanchez-Olivares, G.; Sanchez-Solis, A.; Calderas, F.; Medina-Torres, L.; Herrera-Valencia, E.E.; Rivera-Gonzaga, A.; Manero, O. Extrusión with ultrasound applied on intumescent flame retardant polypropylene. Polym. Eng. Sci. 2013, 53, 2018–2026.
  • Huijiao, L.; Jinwei, Y.; Linh, X.; Fenglyng, L. The synthesis and application of a high performance amino resin nanocomposite as leather flame retardant. Soc. Leather Technol. 2012, 96, 5–10.
  • Sanchez-Olivares, G.; Sanchez-Solis, A.; Calderas, F.; Medina-Torres, L.; Manero, O.; Di Blasio, A.; Alongi, J. Sodium montmorillonite effect on the morphology, thermal, flame retardant and mechanical properties of semi-finished leather. Appl. Clay Sci. 2014, 102, 254–260.
  • Ray, S.S.; Okamoto, M. Polymer–layered silicate nanocomposite: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 641–1539.
  • Alvi, M.U.; Zulfiqar, S.; Yavuz, C.T.; Kweon, H.S.; Sarwar, M.I. Nanostructure and mechanical properties of aromatic polyamide and reactive organoclay nanocomposites. Mater. Chem. Phys. 2014, 147, 636–643.
  • Zahra, M.; Zulfiqar, S.; Yavuz, C.T.; Kweon, H.S.; Sarwar, M.I. Conductive nanocomposite materials derived from SEBS-g-PPy and surface modified clay. Compos. Sci. Technol. 2014, 100, 44–52.
  • Alvi, M.U.; Zulfiqar, S.; Yavuz, C.T; Kweon, H.S.; Sarwar, M.I. Influence of aminosilane coupling agent on aromatic polyamide/intercalated clay nanocomposites. J. Ind. Eng. Chem. 2013, 52, 6908–6915.
  • Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites processing, properties and applications: A review. Composites 2013, 45, 308–320.
  • Nigam, V.; Setua, D.K.; Mathur, G.N.; Kar, K.K. Epoxy-montmorillonite clay nanocomposites: Synthesis and characterization. J. Appl. Polym. Sci. 2004, 93, 2201–2210.
  • Mauroy, H.; Plivelic, T.S.; Suuronen, J.P.; Hage, F.S.; Fossum, J.O.; Knudsen, K.D. Anisotropic clay–polystyrene nanocomposites: Synthesis, characterization and mechanical properties. J. Appl. Clay Sci. 2015, 108, 19–27.
  • Liu, T.J.C.; Wu, H.C. Fiber direction and stacking sequence design for bicycle frame made of carbon/epoxy composite laminate. Mater. Des. 2010, 31, 1971–1980.
  • Chawla, K.K. Foams, fibers, and composites: Where do we stand? Mater. Sci. Eng. 2012, 557, 2–9.
  • Huang, G.; Chen, S.; Song, P.; Lu, P.; Wu, C.; Liang, H. Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl. Clay Sci. 2014, 88, 78–85.
  • Silva, R.T.D.; Pasbakhsh, P.; Lee, S.M.; Kit, A.Y. ZnO deposited/encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties. Appl. Clay Sci. 2015, 111, 10–20.
  • Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid)modifications. Prog. Polym. Sci. 2010, 35, 338–356.
  • Mutiso, R.M.; Winey, K.I. Electrical properties of polymer nanocomposites containingrod-like nanofillers. Prog. Polym. Sci. 2015, 40, 63–84.
  • Okamoto, M.; John, B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 2013, 38, 1487–1503.
  • Taguet, A.; Cassagnau, P.; Lopez-Cuesta, J.-M. Structuration, selective dispersion and compatibilizing effect of (nano) fillers in polymer blends. Prog. Polym. Sci. 2014, 39, 1526–1563.
  • Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis of nylon 6–clay hybrid. J. Mater. Res. 1993, 8, 1179–1184.
  • Messersmith, P.B.; Giannelis, E.P. Polymer–layered silicate nanocomposites: In-situ intercalative polymerization of caprolactone in layered silicates. Chem. Mater. 1993, 5, 1064–1066.
  • Vaia, R.A.; Ishii, H.; Giannelis, E.P. Synthesis and properties of two dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 1993, 5, 1694–1696.
  • Lan, T.; Pinnavaia, T.J. Clay–reinforced epoxy nanocomposites. Chem. Mater. 1994, 6, 2216–2219.
  • Messersmith, P.B.; Giannelis, E.P. Synthesis and barrier properties of poly(caprolactone)–layered silicate nanocomposites. J. Polym. Sci. 1995, 33, 1047–1057.
  • Vaia, R.A.; Vasudevan, S.; Krawiec, W.; Scanlon, L.G.; Giannelis, E.P. New polymer electrolyte nanocomposites: Melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv. Mater. 1995, 7, 154–156.
  • Akelah, A.; Moet, M. Polymer–claynanocomposites: Free radical grafting of polystyrene on to organophilic montmorillonite interlayers. J. Mater. Sci. 1996, 31, 3589–3596.
  • Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A. Preparation and mechanical properties of polypropylene–clay hybrids. Macromolecules 1997, 30, 6333–6338.
  • Kornmann, X.; Berglund, L.A.; Sterte, J.; Giannelis, E.P. Nanocomposite based on montmorillonite and unsaturated polyester. Polym. Eng. Sci. 1998, 38, 1351–1358.
  • Ke, Y.C.; Long, C.F.; Qi, Z.N. Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J. Appl. Polym. Sci. 1999, 71, 1139–1146.
  • Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y.H.; Kotaka, T.; Tateyama, H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay polystyrene nanocomposites via in situ intercalative polymerization. Polymer 2000, 41, 3887–3890.
  • Okamoto, M.; Morita, S.; Kotaka, T. Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites. Polymer 2001, 42, 2685–2688.
  • Kim, G.-M.; Lee, D.-H.; Hoffmann, B.; Kressler, J.; Stoppelmann, G. Influence of nanofillers on the deformation process in layered silicate/polyamide 12 nanocomposites. Polymer 2001, 42, 1095–1100.
  • Fornes, T.D.; Yoon, P.J.; Keskkula, H.; Paul, D.R. Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 2001, 42, 9929–9940.
  • Huang, J.C.; Zhu, Z.K.; Yin, J.; Qian, X.F.; Sun, Y.Y. Poly(etherimide)/ montmorillonite nanocomposites prepared by melt intercalation: Morphology, solvent resistance properties and thermal properties. Polymer 2001, 42, 873–877.
  • Alexandre, M.; Beyer, G.; Henrist, C.; Cloots, R.; Rulmont, A.; Jérôme, R.; Dubois, P. Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromol. Rapid Commun. 2001, 22, 643–646.
  • Ray, S.S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/ layered silicate nanocomposites. Preparation, characterization and properties. Macromolecules 2002, 35, 3104–3110.
  • Becker, O.; Varley, R.; Simon, G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 2002, 43, 4365–4373.
  • Jin, Y.H.; Park, H.J.; Im, S.S.; Kwak, S.Y.; Kwak, S. Polyethylene/clay nanocomposite by in-situ exfoliation of montmorillonite during Ziegler–Natta polymerization of ethylene. Macromol. Rapid. Commun. 2002, 23, 135–140.
  • Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A.; Sato, N. Nylon 6/Na–montmorillonite nanocomposites prepared by compounding nylon 6 with Na–montmorillonite slurry. J. Polymer. 2003, 44, 2933–2937.
  • Miyagawa, H.; Rich, M.J.; Drzal, L.T. Amine-cured epoxy/clay nanocomposites. Processing and chemical characterization. J. Polym. Sci. 2004, 42, 4384–4390.
  • Zhang, H.; Wang, Y.; Wu, Y.; Zhang, L.; Yang, J. Study on flammability of montmorillonite/styrene- butadiene rubber (SBR) nanocomposites. J. Appl. Polym. Sci. 2005, 97, 844–849.
  • Joshi, M.; Viswanathan, V. High-performance filaments from compatibilized polypropylene/clay nanocomposites. J. Appl. Polym. Sci. 2006, 102, 2164–2174.
  • Lei, Y.; Wu, Q.; Clemons, C.M.; Yao, F.; Xu, Y. Influence of nanoclay on properties of HDPE/wood composite. J. Appl. Polym. Sci. 2007, 106, 3958–3966.
  • Hwang, S.J.; Joo, Y.L.; Lee, S.J. Properties of high-impact polystyrene/organoclay nanocomposites synthesized via in situ polymerization. J. Appl. Polym. Sci. 2008, 110, 1441–1450.
  • Bilotti, E.; Zhang, R.; Deng, F.; Quero, H.; Fischer, R.; Peijs, T. Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates. Compos. Sci. Technol. 2009, 69, 2587–2595.
  • Sahoo, S.; Sasmal, A.; Sahoo, D.; Nayak, P. Synthesis and characterization of chitosan- polycaprolactone blended with organoclay for control release of doxycycline. J. Appl. Polym. Sci. 2010, 118, 3167–3175.
  • Kapole, S.A; Kulkarni, R.D.; Sonawane, R.H. Performance properties of acrylic and acrylic polyol–polyurethane based hybrid system via addition of nano-caco3 and nanoclay. Can. J. Chem. Engineer. 2011, 89, 1590–1595.
  • Mittal, V. Modelling of tensile modulus of polyolefin-layered silicate nanocomposites: Modified micro-mechanical and statistical methods. J. Polym. Engineer. 2012, 32, 519–529.
  • Halim, K.A.A.; Farrell, J.B.; Kennedy, J.E. Preparation and characterisation of polyamide 11/montmorillonite (MMT) nanocomposites for use in angioplasty balloon applications. Mater. Chem. Phys. 2013, 143, 336–348.
  • Lei, F.; Yang, S.; Yang, M.; Li, J.; Guo, S. Exfoliation of organic montmorillonite in iPP free of compatibilizer through the multistage stretching extrusion. Polym. Bull. 2014, 71, 3261–3273.
  • Asadi, J.; Ebrahimi, N.G.; Kashani, M.R. Self-healing property of epoxy/nanoclay nanocomposite using poly(ethylene-co-methacrylic acid) agent. Composites 2015, 68, 56–61.
  • Gacitua, W.E.; Ballerini, A.A.; Zhang, J. Polymer nanocomposites: Synthetic and natural fillers a review. Maderas Cienciay Tecnol. 2005, 7, 159–178.
  • Zeng, Q.H.; Yu, A.B.; Lu, G.Q.; Paul, D.R. Clay-based polymer nanocomposites: Research and commercial development. J. Nanosci. Nanotechnol. 2005, 5, 1574–1592.
  • Richard, S. Automotive plastics: The goals: More miles per gallon, fewer emissions (and lower costs). Plast. Engineer. Soc. Plast. Engineer. 2009, 65, 207643958.
  • Kim, J.H.; Koo, C.M.; Choi, Y.S.; Wang, K.H.; Chung, I.J. Preparation and characterization of polypropylene/layered silicate nanocomposites using an antioxidant. J. Polymer. 2004, 45, 7719–7727.
  • Leaversuch, R. Nanocomposites broaden roles in automotive, barrier packaging. Int. J. Plast. Technol. 2001, 47, 64–69.
  • Seubert, C.; Nichols, M.; Henderson, K.; Mechtel, M.T. J. The effect of weathering and thermal treatment on the scratch recovery characteristics of clearcoats. Coat. Technol. 2010, 7, 159–166.
  • Scrinzi, E.; Rossi, S.; Kamarchik, P.; Deflorian, F. Evaluation of durability of nano-silica containing clear coats for automotive applications. Prog. Org. Coat. 2011, 71, 384–390.
  • Ramezanzadeha, B.; Moradian, S.; Tahmasebi, N.; Khosravi, N. Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clearcoat. Prog. Org. Coat. 2011, 72, 621–631.
  • Ramezanzadeha, B.; Moradian, S.; Tahmasebi, N. A new approach to investigate scratch morphology and appearance of an automotive coating containing nano SiO2 and polysiloxane additives. Prog. Org. Coat. 2011, 72, 541–552.
  • Miller, L.; Soulliere, K. Challenges and alternatives to plastics recycling in the automotive sector. Materials 2014, 7, 5883–5902.
  • Njuguna, J.; Pielichowski, K. Polmer nanocoposites for aerospace. Adv. Engineer. Mater. 2003, 5, 769–778.
  • Gorinevsky, D.; Hyde, T.T. Adaptive membrane for large lightweight space telescopes. Astronom. Telescop. Instrument. 2002, 1–9.
  • Tanasă, F.; Zănoagă, M.; Darie, R. Evaluation of stress-strain properties of some new polymer-clay nanocomposites for aerospace and defence applications. Int. Confer. Sci. Pap. 2014, 22–24.
  • Zhua, J.; Wilkie, C.A. Thermal and fire studies on polystyrene-clay nanocomposites. Polym. Int. 2000, 49, 1158–1163.
  • Zhu, J.; Start, P.; Kenneth, A.; Mauritz. Thermal stability and flame retardancy of PMMA-clay nanocomposites. Polym. Degrad. Stab. 2002, 77, 253–258.
  • Kim, B.K.; Seo, J.W.; Jeong, H.M. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur. Polym. J. 2003, 39, 85–91.
  • Azeez, A.A.; Rhee, K.Y. Epoxy clay nanocomposites-processing, properties and applications: A review. Composites 2013, 45, 308–320.
  • Feldman, D. Polymer nanocomposite barriers. J. Macromol. Sci. A. Pure Appl. Chem. 2013, 50, 441–448.
  • Rhim, J.W.; Park, H.M. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci., 2013, 38, 1629–1652.
  • Marco, O.A.; Luca, B.; Hermes, F. Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of L-lactide with silane-modified nanosilica and montmorillonite. Eur. Polym. J. 2015, 66, 478–491.
  • Unalan, I.U.; Cerri, G.; Marcuzzo, E. Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): Current applications and future opportunities in the food packaging sector”. RSC Adv. 2014, 4, 29393–29428.
  • In Mat press release. Ultrahigh barrier coating breakthrough: Reduces food packaging costs and environmental impact. Innovat. Nanocompos. Mater., 2009, 1–3.
  • Fong, H.; Liu, W.; Wang, C.; Vaia, R.A. Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer 2002, 43, 775–780.
  • Agarwal, A.; Raheja, A.; Natarajan, T.S.; Chandra, T.S. Effect of electrospun montmorillonite-nylon 6 nanofibrous membrane coated packaging on potato chips and bread. J. Innovat. Food Sci. Emerg. Technol. 2014, 26, 424–430.
  • Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H.P.S.; Salema, A.A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials and Design 2013, 46, 391–410.
  • Feldman, D. Polymer nanocomposites in building, construction. J. Macromol. Sci. 2014, 51, 203–209.
  • Pourjavadi, A.; Fakoorpoor, S.M.; Hosseini, P.; Khaloo, A. Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cem. Concr. Comp. 2013, 37, 196–204.
  • Pique, T.M.; Vazquez, A. Control of hydration rate of polymer modified cements by the addition of organically modified montmorillonites. Cem. Concr. Comp. 2013, 37, 54–60.
  • Zhang, H.; Yu, J.; Wu, S. Effect of montmorillonite organic modification on ultraviolet aging properties of SBS modified bitumen. Constr. Build. Mater. 2012, 27, 553–559.
  • Al-Safy, R.; Al-Mahaidi, R.; Simon, G.P.; Habsuda, J. Experimental investigation on the thermal and mechanical properties of nanoclay-modified adhesives used for bonding CFRP to concrete substrates. Constr. Build. Mater. 2012, 28, 769–778.
  • Amini, R.S.; Tirri, T.; Wilen, C.E. Synthesis and characterization of polyurethane (PU)/clay nanocomposite adhesives. J. Appl. Polym. Sci. 2013, 129, 1678–1685.
  • Scarfato, P.; Di Maio, L.; Fariello, M.L.; Russo, P.; Incarnato, L. Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement. Cem. Concr. Compos. 2012, 34, 297–305.
  • Smith, R. Biodegradable Polymer for Industrial Applications. CRC Press: Boca Raton, FL, 2005; pp. 520–532.
  • Chandra, R.; Rustgi, R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273–1335.
  • Platt, D.K. Biodegradable Polymers, Market Report. Rapra Technol. Ltd: London, 2006; p. 158.
  • Ray, S.S.; Okamoto M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641.
  • Chung, Y.L.; Ansari, S.; Estevez, L.; Hayrapetyan, S.; Giannelis, E.P.; Lai, H.M. Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr. Polym. 2010, 79, 391–396.
  • Konwar, U.; Karak, N. Mesua ferrea L. seed oil based highly branched environment friendly polyester resin/clay nanocomposites. J. Polym. Environ. 2011, 19, 90–99.
  • Bensadoun, F.; Kchit, N.; Billotte, C.; Bickerton, S.; Trochu, F.; Ruiz, E. A study of nanoclay reinforcement of biocompositesmade by liquid composite molding. Int. J. Polym. Sci. 2011, 1–10.
  • Ma, P.X. Scaffolds for tissue fabrication. Materials 2004, 7, 30–40.
  • Langer, R.; Vacanti, J.P. Tissue engineering. Science 1993, 260, 920–926.
  • Urbańska, J.; Karewicz, A.; Nowakowska, M. Polymeric delivery systems for dexamethasone. Life. Sci. 2014, 96, 1–6.
  • Jain, S.; Datta, M. Oral extended release of dexamethasone: Montmorillonite–PLGA nanocomposites as a delivery vehicle. Appl. Clay Sci. 2015, 104, 182–188.
  • Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical industry. Part I. Excipients and medical applications. Appl. Clay Sci. 2009, 46, 73–80.
  • Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries. Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 3–4, 171–181.
  • Holesov, S.; Valaskov, M.; Plevov, E.; Pazdziora, E.; Matějová, K. Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate. J. Coll. Interfac. Sci. 2010, 342, 593–597.
  • Holesov, S.; Samlıkov, M.; Pazdziora, E.; Valášková, M. Antibacterial activity of organo montmorillonites and organo vermiculites prepared using chlorhexidine diacetate. Appl. Clay Sci. 2013, 83, 17–23.
  • Gajdziok, J.; Holešová, S.; Štembírek, J.; Pazdziora, E.; Landová, H.; Doležel, P.; Vetchý, D. Carmellose mucoadhesive oral films containing vermiculite/chlorhexidine nanocomposites as innovative biomaterials for treatment of oral infections. Biomed. Res. Int. 2015, 1–16.
  • Webb, H. K; Arnott, J.; Crawford, R.; Ivanova, E. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymer 2013, 5, 1–18.
  • Unuabonah, E.I.; Taubert, A. Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Appl. Clay Sci. 2014, 99, 83–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.