1,122
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Perspectives of Epoxy/Graphene Oxide Composite: Significant Features and Technical Applications

, , &

References

  • Shah, R.; Kausar, A.; Muhammad, B.; Shah, S. Progression from Graphene and Graphene Oxide to high performance polymer-based nanocomposite: A Review. Polym. Plast. Technol. Eng. 2015, 54, 173–183.
  • Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
  • Mahkam, M.; Rafi, A.A.; Faraji, L.; Zakerzadeh, E. Preparation of poly (methacrylic acid)-graphene oxide nanocomposite as a pH-sensitive drug carrier through in-situ copolymerization of methacrylic acid with polymerizable graphene. Polym. Plast. Technol. Eng. 2015, 54, 916–922.
  • Li, P.; Ren, H.; Qiu, F.; Xu, J.; Yu, Z.; Yang, P.; Xu, B.; Jiang, Y.; Yang, D. Preparation and properties of graphene oxide-modified waterborne polyurethane-acrylate hybrids. Polym. Plast. Technol. Eng. 2015, 53, 1408–1416.
  • Day, R.J.; Lovell, P.A.; Wazzan, A.A. Toughened carbon/epoxy composites made by using core/shell particles. Comp. Sci. Technol. 2001, 61, 41–56.
  • Jiao, J.; Sun, X.; Pinnavaia, T.J. Mesostructured silica for the reinforcement and glassy epoxy polymers. Polymer 2009, 50, 983–989.
  • Montazeri, A.; Javadpour, J.; Khavandi, A.; Tcharkhtchi, A.; Mohajeri, A. Mechanical properties of multi-walled carbon nanotube/epoxy composites. Mater. Des. 2010, 31, 4202–4208.
  • Thostenson, E.T.; Chou, T.W. Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44, 3022–3029.
  • Gao, L.P.; Wang, D.Y.; Wang, Y.Z.; Wang, J.S.; Yang, B. A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym. Degrad. Stab. 2008, 93, 1308–1315.
  • Tsukagoshi, K.; Alphenaarm, B.W.; Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 1999, 401, 572–574.
  • Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.
  • Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.
  • Wu, Y.H.; Yu, T.; Shen, Z.X. Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. J. Appl. Phys. 2010, 108, 071301–071301–38.
  • Mikoushkin, V.M.; Shnitov, V.V.; Nikonov, Y.S.; Dideykin, A.T.; Vul, S.P.; Ya, V.A.; Sakseev, D.A.; Yalikh, D.V.V.; Yu, V.O. Controlling graphite oxide bandgap width by reduction in hydrogen. Tech. Phys. Lett. 2011, 37, 942–945.
  • Jeong, H.K.; Lee, Y.P.; Lahaye, R.J.W.E.; Park, M.-H.; An, K.H.; Kim, I.J.; Yang, C.W.; Park, C.Y.; Ruoff, R.S.; Lee, Y.H. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366.
  • Liu, P.G.; Gong, K.C. Synthesis of polyaniline-intercalated graphite oxide by an in-situ oxidative polymerization reaction. Carbon 1999, 37, 706–707.
  • Seredych, M.; Bandosz, T.J. Removal of ammonia by graphite oxide via its intercalation and reactive adsorption. Carbon 2007, 45, 2130–2132.
  • Suranaa, K.; Singh, P.K.; Bhattacharya, B.; Verma, C.S.; Mehra, R.M. Synthesis of graphene oxide coated Nafion membrane for actuator application. Ceram. Int. 2015, 41, 5093–5099.
  • Schniepp, H.C.; Li, J.L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Aksay, I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B. 2006, 110, 8535–8539.
  • McAllister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prudhomme, R.K.; Aksay, I.A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.
  • Geim, A.K. Graphene status and prospects. Science 2009, 324, 1530–1534.
  • Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
  • Balandin, A.A.; Ghosh, S.; Bao, W.Z.; Calizo, I.D.; Miao, T.F.; Lau, C.N. Superior thermal conductivity of single layer graphene. Nano Lett. 2008, 8, 902–907.
  • Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Ruoff, R.S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.
  • Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286.
  • Li, D.; Mueller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.
  • Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.
  • Lu, N.; Huang, Y.; Li, H.B.; Li, Z.; Yang, J. First principles nuclear magnetic resonance signatures of graphene oxide. J. Chem. Phys. 2010, 133, 034502.
  • Cai, W.; Piner, R.D.; Stadermann, F.J.; Park, S.; Shaibat, M.A.; Ishii, Y.; Ruoff, R.S. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008, 321, 1815–1817.
  • Liu, Z.; Wang, Y.; Zhang, X.; Xu, Y.; Chen, Y.; Tian, J. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 2009, 94, 021902–021903.
  • Gómez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.
  • Wang, S.; Chia, P.J.; Chua, L.L.; Zhao, L.H.; Png, R.Q.; Sivaramakrishnan, S.; Zhou, M.; Goh, R.G.S.; Friend, R.H.; Wee, A.T.S.; Ho, P.K.H. Band like transport in surface functionalized highly solution processable graphene nanosheet. Adv. Mater. 2008, 20, 3440–3446.
  • Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394–3398.
  • Lerf, A.; He, H.Y.; Forster, M.; Klinowski, J. Structure of graphite. J. Phys. Chem. B. 1998, 102, 4477–4482.
  • Castro, E.V.; Novoselov, K.S.; Morozov, S.V.; Peres, N.M.R.; DosSantos, J.L.; Nilsson, J.; Neto, A.C. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.
  • Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbonNanotubes under tensile load. Science 2000, 287, 637–640.
  • Allaoui, A.; Bai, S.; Cheng, H.M.; Bai, J.B. Mechanical andelectrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 2003, 62, 1993–1998.
  • Gomez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.
  • Suk, J.W.; Piner, R.D.J.; Ruoff, R.S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564.
  • Nethravathi, C.; Rajamathi, J.T.; Ravishankar, N.; Shivakumara, C.; Rajamathi, M. Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites. Langmuir 2008, 24, 8240–8244.
  • Szabo, T.; Szeri, A.; Dekany, I. Composite graphitic nanolayers preparedby self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005, 43, 87–94.
  • Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25.
  • Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.
  • Wang, H.L.; Hao, Q.L.; Yang, X.J.; Lu, L.D.; Wang, X. Graphene oxide doped polyaniline for super capacitors. Electrochem. Commun. 2009, 11, 1158–1161.
  • Paci, J.T.; Belytschko, T.; Schatz, G.C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J. Phys. Chem. 2007, 111, 18099–18111.
  • Cassagneau, T.; Guérin, F.; Fendler, J.H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 2000, 16, 7318–7324.
  • Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 2010, 22,1392–1401.
  • Salavagione, H.J.; Martínez, G. Importance of covalent linkages in the preparation of effective reduced graphene oxide-poly(vinyl chloride) nanocomposites. Macromolecules 2011, 44, 2685–2692.
  • Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A 2010, 41, 1345–1367.
  • Bortz, D.R.; Heras, E.G.; Martin-Gullon, I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 2012, 45, 238–245.
  • Hou, S.; Su, S.; Kasner, M.L.; Shah, P.; Patel, K.; Madarang, C.J. Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem. Phys. Lett. 2010, 50, 68–74.
  • Wan, Y.-J.; Tang, L.-C.; Gong, L.-X.; Yan, D.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 2014, 69, 467–480.
  • Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Grigorieva, D.S.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
  • Xu, L.Q.; Wang, L.; Zhang, B.; Lim, C.H.; Chen, Y.; Neoh, K.G.; Fu, G.D. Functionalization of reduced graphene oxide nanosheets via stacking interactions with the fluorescent and water-soluble perylene bisimide-containing polymers. Polymer 2011, 52, 2376–2383.
  • Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z.; Cai, J.; Zhang, C.; Gao, H.; Chen, Y. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922–925.
  • Li, J.; Ma, P.C.; Chow, W.S.; To, C.K.; Tang, B.Z.; Kim, J.K. Correlations between percolation threshold, dispersion state and aspectratio of carbon nanotubes. Adv. Funct. Mater. 2007, 17, 3207–3215.
  • Yousefi, N.; Gudarzi, M.M.; Zheng, Q.B.; Aboutalebi, S.H.; Sharif, F.; Kim, J.K. Self-alignment and high electrical conductivity of ultra large graphene oxide/polyurethane nanocomposites. J. Mater. Chem. 2012, 22, 12709–127017.
  • Zaman, I.; Kuan, H.C.; Meng, Q.S.; Michelmore, A.; Kawashima, N.; Pitt, T.; Zhang, L.; Gouda, S.; Luong, L.; Ma, J. A facile approach to chemically modified graphene and its polymer nanocomposites. Adv. Funct. Mater. 2012, 22, 2735–2743.
  • Yousefi, N.; Lin, X.Y.; Zheng, Q.B.; Shen, X.; Pothnis, J.R.; Jia, J.J.; Zussman, E.; Kim, J.K. Simultaneous in-situ reduction, self-alignment and covalent bonding in grapheneoxide/epoxy composites. Carbon 2013, 59, 406–417.
  • Rafiee, M.A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Fracture and fatigue ingraphene nanocomposites. Small 2009, 6, 179–183.
  • Wang, S.R.; Tambraparni, M.; Qiu, J.J.; Tipton, J.; Dean, D. Thermal expansion of graphene composites. Macromolecules 2009, 42, 5251–5255.
  • Yu, C.H.; Shi, L.; Yao, Z.; Li, D.Y.; Majumdar, A. Thermal conductance and thermo power of an individual single wall carbon nanotube. Nano Lett. 2005, 5, 1842–1846.
  • Berber, S.; Kwon, Y.K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616.
  • Miyagawa, H.; Drzal, L.T. Thermo-physical and impact properties of Epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 2004, 45, 5163–5170.
  • Chen, B.; Ma, N.; Bai, X.; Zhang, H.; Zhang, Y. Effects of graphene oxide on surface energy mechanical, damping and thermal properties of ethylene-propylene-diene rubber/petroleum resin blends. RSC Adv. 2012, 2, 4683–4689.
  • Kuila, T.; Bose, S.; Hong, C.E.; Uddin, M.E.; Khanra, P.; Kim, N.H.; Lee, J.H. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method. Carbon 2011, 49, 1033–1037.
  • Kim, F.; Luo, J.; Cruz-Silva, R.; CoteL, J.; Sohn, K.; Huang, J. Self-propagating domino-like reactions in oxidized graphite. Adv. Funct. Mater. 2010, 20, 2867–2873.
  • Wang, Z.; Tang, X.-Z.; Yu, Z.-Z.; Guo, P.; Song, H.-H.; Duc, X.-S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chin. J. Polym. Sci. 2011, 29, 368–376.
  • Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M.D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564.
  • Zaman, I.; Phan, T.T.; Kuan, H.C.; Meng, Q.S.; LaL, T.B.; Luong, L.; Youssf, O.; Ma, J. Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 2011, 52, 1603–1611.
  • Fang, M.; Wang, K.G.; Lu, H.B.; Yang, Y.L.; Nutt, S. Single-layergraphene nanosheets with controlled grafting of polymer chains. J. Mater. Chem. 2010, 20, 1982–1992.
  • Thostenson, E.T.; Chou, T.W. Aligned multi-walled carbon nanotube-reinforced composites processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, 77–80.
  • Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 2009, 3, 3884–3890.
  • Abdullah, S.I.; Ansari, M.N.M. Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J. 2015, 11, 151–156.
  • Song, Z.; Artyukhov, V.I.; Yakobson, B.I.; Xu, Z. Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett. 2013, 13, 1829–1833.
  • Kozima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Mechanical properties of nylon-6 clay hybrid. J. Mater. Res. 1993, 8, 1185–1189.
  • Garces, J.M.; Moll, D.J.; Bicerano, J.; Fibiger, R.; McLeod, D.G. Polymeric nanocomposite for automotive applications. Adv. Mater. 2000, 12, 1835–1839.
  • Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer 2008, 49, 3187–3204.
  • Yang, J.P.; Chen, Z.K.; Yang, G.; Fu, S.Y.; Ye, L. Simultaneous improvement in cryogenic tensile strength, ductility and impact strength of epoxy resins by a hyper branched polymer. Polymer 2008, 49, 3168–3175.
  • Qiu, S.L.; Wang, C.S.; Wang, Y.T.; Liu, C.G.; Chen, X.Y.; Xie, H.F.; Huang, Y.A.; Cheng, R.S. Effects of graphene oxides on the cure behaviours of a tetra functional epoxy resin. Polym. Lett. 2011, 5, 809–818.
  • Prasai, D.; Tuberquia, C.J.; Harl, R.R.; Jennings, G.K.; Bolotin, K.I. Correction to graphene: Corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108.
  • Nayak, P.K.; Hsu, C.J.; Wang, S.C.; Sung, J.C.; Huang, J.L. Graphene coated Ni films: A protective coating. Thin Solid Films 2013, 529, 312–316.
  • Liu, K.H.; Chen, S.L.; Luo, Y.F.; Jia, D.M.; Gao, H.; Hu, G.J.; Liu, L. Edge-functionalized graphene as reinforcement of epoxy-based conductive composite for electrical interconnects. Compos. Sci. Technol. 2013, 88, 84–91.
  • Qian, X.D.; Song, L.; Yu, B.; Wang, B.B.; Yuan, B.H.; Shi, Y.Q.; Hu, Y.; Yuen, R.K.K. Novel organic-inorganic flame retardants containing exfoliated graphene: Preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1, 6822–6830.
  • Chang, K.C.; Hsu, M.H.; Lu, H.I.; Lai, M.C.; Liu, P.J.; Hsu, C.H.; Ji, W.F.; Chuang, T.L.; Wei, Y.; Yeh, J.M.; Liu, W.-R. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon 2014, 66, 144–153.
  • Mirabedini, S.M.; Kiamanesh, A. The effect of micro and nano-sized particles on mechanical and adhesion properties of a clear polyester powder coating. Prog. Org. Coat. 2013, 76, 1625–1632.
  • Verker, R.; Grossman, E.; Eliaz, N. Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen: The role of mechanical properties at elevated temperatures. Acta Mater. 2009, 57, 1112–1119.
  • Karim, M.R.; Hatakeyama, K.; Matsui, T.; Takehira, H.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y.; Akutagawa, T.; Nakamura, T.; Noro, S.; Yamada, T.; Kitagawa, H.; Hayami, S. Graphene oxide nanosheet with high proton conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100.
  • Hatakeyama, K.; Karim, M.R.; Ogata, C.; Tateishi, H.; Funatsu, A.; Taniguchi, T.; Koinuma, M.; Hayami, S.; Matsumoto, Y. Proton conductivities of graphene oxide nanosheets: single multilayer and modified nanosheets. Angew. Chem. Int. Ed. 2014, 53, 6997–7000.
  • Ohira, S.; Goto, K.; Toda, K.; Dasgupta, P.K. A capacitance sensor for water: trace moisture measurement in gases and organic solvents. Anal. Chem. 2012, 84, 8891–8897.
  • Guo, L.; Jiang, H.B.; Shao, R.Q.; Zhang, Y.L.; Xie, S.Y.; Wang, J.N.; Li, X.B.; Jiang, F.; Chen, Q.D.; Zhang, T.; Sun, H.B. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon 2012, 50, 1667–1673.
  • Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.
  • Tang, L.; Wang, Y.; Li, Y.; Feng, H.; Lu, J.; Li, J. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19(17), 2782–2789.
  • Ansari, S.; Giannelis, E.P. Functionalized graphene sheet-Poly(vinylidene Fluoride) conductive nanocomposites. J. Polym. Sci. B. Polym. Phys. 2009, 47, 888–897.
  • Xu, C.; Wang, X.; Wang, J.; Hu, H.; Wan, L. Synthesis and photoelectrical properties of b-Cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem. Phys Lett. 2010, 498, 162–167.
  • Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on grapheme. Anal. Chem. 2009, 81, 2378–2382.
  • Bryning, M.B.; Islam, M.F.; Kikkawa, J.M.; Yodh, A.G. Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv. Mater. 2005, 17, 1186–1191.
  • Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375.
  • Sharmila, B.T.K.; Ajalesh, B.; Beena, N.T.; Abraham, P.M.; Beegum, S.; Thachil, E.T. Microwave exfoliated reduced graphene oxide epoxy nanocomposites for high performance applications. Polymer 2014, 55, 3614–3627.
  • Palacin, M.R. Recent advances in rechargeable battery materials, a chemist's perspective. Chem. Soc. Rev. 2009, 38, 2565–2575.
  • Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.
  • Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.S.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.
  • Song, Z.; Xu, T.; Gordin, M.L.; Jiang, Y.B.; Bae, I.T.; Xiao, Q.; Zhan, H.; Liu, J.; Wang, D. Polymer-Graphene nanocompositesas ultrafast-charge and discharge cathodes for rechargeable Lithium batteries. Nano Lett. 2012, 12, 22205–22211.
  • Wu, Q.; Xu, Y.X.; Yao, Z.Y.; Liu, A.R.; Shi, G.Q. Super capacitors based on flexible graphene-polyaniline nanofibre composite film. ACS Nano 2010, 4, 1963–1970.
  • Zhou, X.; Wu, T.B.; Hu, B.J.; Yang, G.Y.; Han, B.X. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun. 2010, 46, 3663–3665.
  • Yong, Y.C.; Dong, X.C.; Chan-Park, M.B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012, 6, 2394–2400.
  • Eda, G.; Lin, Y.Y.; Miller, S.; Chen, C.W.; Su, W.F.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 2008, 92, 233305–1–3.
  • Blake, P.; Brimicombe, P.D.; Nair, R.R.; Booth, T.J.; Jiang, D.; Schedin, F.; Morozov, P.L.S.V.; Gleeson, H.F.; Hill, E.W.; Geim, A.K.; Novoselov, K.S. Graphene-based liquid crystal devices. Nano Lett. 2008, 8, 1704–1708.
  • Gomez De Arco, L.; Zhang, Y.; Schlenker, C.W.; Ryu, K.; Thompson, M.E.; Zhou, C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 2010, 4, 2865–2873.
  • Eda, G.; Unalan, H.E.; Rupesinghe, N.L.; Amaratunga, G.A.J.; Chhowalla, M. Field emission from graphene based composite thin films. Appl. Phys. Lett. 2008, 93, 233502–233503.
  • Verma, V.P.; Das, S.; Lahiri, I.; Choi, W. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl. Phys. Lett. 2010, 96, 203108–203113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.