1,342
Views
20
CrossRef citations to date
0
Altmetric
Reviews

Exploitation of Nanobifiller in Polymer/Graphene Oxide–Carbon Nanotube, Polymer/Graphene Oxide–Nanodiamond, and Polymer/Graphene Oxide–Montmorillonite Composite: A Review

, &

References

  • Shah, R.; Kausar, A.; Muhammad, B.; Shah, S. Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: A review. Polym.-Plast. Technol. Eng. 2015, 54, 173–183.
  • Jabeen, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. A review on polymeric nanocomposites of nanodiamond, carbon nanotube and nanobifiller: Structure, preparation and properties. Polym.-Plast. Technol. Eng. 2015, 54, 1379–1409. doi:10.1080/03602559.2015.1021489
  • Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49.
  • Wilson, N.R.; Pandey, P.A.; Beanland, R.; Young, R.J.; Kinloch, I.A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J.P.; York, S.J.; Sloan, J. Graphene oxide: Structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 2009, 3, 2547–2556.
  • Dimiev, A.M.; Alemany, L.B.; Tour J.M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 2013, 7, 576–588.
  • Saxena, S.; Tyson, T.A.; Negusse, E. Investigation of the local structure of graphene oxide. J. Phys. Chem. Lett. 2010, 1, 3433–3437.
  • Shahriary, L.; Athawale, A.A. Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng. 2014, 2, 58–63.
  • Wojtoniszak, M.; Chen, X.; Kalenczuk, R.J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chuc, P.K.; Borowiak-Palen, E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf., B. 2012, 89, 79–85.
  • Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. Nano 2010, 4, 4806–4814.
  • Allahbakhsh, A.; Sharif, F.; Mazinani, S.; Kalaee, M.R. Synthesis and characterization of Graphene Oxide in suspension and powder forms by chemical exfoliation method. Int. J. Nano Dimens. 2014, 5, 11–20.
  • Hummers, W.S., Jr.; Offman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.
  • Zheng, Q.; Ip, W.H.; Lin, X.; Yousefi, N.; Yeung, K.K.; Li, Z.; Kim, J. Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir Blodgett assembly. ACS Nano 2011, 5, 6039–6051.
  • Pai, A.R.; Nair, B. Synthesis of reduced graphene oxide using novel exfoliation technique and its characterizations. J. Nano. Electron. Phys. 2013, 5, 02032.
  • Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.
  • Xiao, L.; Jia, X.; Liao, L.; Liu, L. Chemical modification of graphene oxide by copper compound. Chem. Rapid Commun. 2014, 2, 2325–9906.
  • Viana, M.M.; Lima, M.C.; Forsythe, J.C.; Varun, S.; Gangoli, V.C.; Cho, M.; Cheng, Y.; Silva, G.G.; Wong, M.S.; Caliman, V. Facile graphene oxide preparation by microwave-assisted acid method. J. Braz. Chem. Soc. 2015, 26, 978–984.
  • Liao, K.; Lin, Y.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615.
  • Uddin, M.N.; Kim, J.K. Fracture properties of graphene oxide (GO) and GO/CNT hybrid papers. Tappi. J. 2007, 6, 25–32.
  • Depan, D.; Girase, B.; Shah, J.S.; Misra R.D.K. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomater. 2011, 7, 3432–3445.
  • Huang, X.; Zhi, C.; Jiang, P.; Golberg, D.; Bando, Y.; Tanaka, T. Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 2012, 23, 455705.
  • Cha, C.; Shin, S.R.; Gao, X.; Annabi, N.; Dokmeci, R.M.; Tang, X.S.; Khademhosseini, A. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 2014, 10, 514–523.
  • Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K.M. Graphene oxide vs reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 2012, 20, 19463.
  • Singh, S.K.; Singh, M.K.; Nayak, M.K.; Kumari, S.; Shrivastava, S.; Gracio, J.J.; Dash, D. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 2011, 5, 4987–4996.
  • Li, C.; Chou, T.W. A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids. Struct. 2003, 40, 2487–2499.
  • Kiang, C.H.; Goddard, W.A.; Beyers, R.; Bethune, D.S. Structural modification of single-layer carbon nanotubes with an electron beam. J. Phys. Chem. 1996, 100, 3749–3752.
  • Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.
  • Nizam, R.; Mahdi, S.; Rizvi, A.; Azam, A. Calculating electronic structure of different carbon nanotubes and its effect on band gap. Int. J. Sci. Technol. 2011, 1, 153–162.
  • Cao, J.X.; Yan, X.H.; Ding, J.W.; Wang, D.L. Band structures of carbon nanotubes: the sp3s* Tight-binding model. J. Phys.: Condens. Matter. 2001, 13, L271–L275.
  • Itkis, M.E.; Niyogi, S.; Meng, M.E.; Hamon, M.A.; Hu, H.; Haddon, R.C. Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotube. Nano Lett. 2002, 2, 155–159.
  • Cioslowski, J.; Rao, N.; Moncrieff, D. Electronic structures and energetics of [5,5] and [9,0] single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 8485–8489.
  • Nasibulin, A.G.; Moisala, A.; Brown, D.P.; Jiang, H.; Kauppinen, E.I. A novel aerosol method for single walled carbon nanotube synthesis. Chem. Phys. Lett. 2005, 402, 227–232.
  • Kong, J.; Cassell, A.M.; Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 292, 567–574.
  • Vander Wal, R.L.; Ticich, T.M. Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J. Phys. Chem. 2001, 105, 10249–10256.
  • Zheng, G.B.; Kouda, K.; Sano, H.; Uchiyama, Y.; Shi, Y.F.; Quan, H.J. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon 2004, 42, 635–640.
  • Lyu, S.C.; Liu, B.C.; Lee, S.H.; Park, C.Y.; Kang, H.K.; Yang, C.W.; Lee, C.J. Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene. J. Phys. Chem. 2004, 108, 1613–1616.
  • Antisari, M.V.; Marazzi, R.; Krsmanovic, R. Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 2003, 41, 2393–2401.
  • An, L.; Owens, J.M.; McNeil, L.E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.
  • Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Sol. 2000, 61, 1153–1158.
  • Ruoff, R.S.; Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33, 925–930.
  • Zhou, G.; Duan, W.; Gu, B. First-principles study on morphology and mechanical Properties of single-walled carbon nanotube. Chem. Phys. Lett, 2001, 333, 344–349.
  • Palosz, B.; Pantea, C.; Grzanka, E.; Stelmakh, S.; Proffen, T.W.; Zerda, T.; Palosz, W. Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diamond Relat. Mater. 2006, 15, 1813–1817.
  • Guan, B.; Zou, F.; Zhi, J. Nanodiamond as the pH-responsive vehicle for an anticancer drug. Small 2010, 6, 1514–1519.
  • Joshi, G.V.; Kevadiya, B.D.; Patel, H.A.; Bajaj, H.C.; Jasra, R.V. Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. Int. J. Pharm. 2009, 374, 53–57.
  • Lakshmi, M.S.; Narmadha, B.; Reddy, B.S.R. Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 2008, 93, 201–213.
  • Fan, Z.; Hsiao, K.T.; Advani, S.G. Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media. Carbon 2004, 42, 871–876.
  • Hu, N.; Wei, L.; Wang, Y.; Gao, R.; Chai, J.; Yang, Z.; Kong, E.S.W.; Zhang, Y. Graphene oxide reinforced polyimide nanocomposites via in situ polymerization. J. Nanosci. Nanotechnol. 2012, 12, 173–178.
  • Li, M.; Liu, Q.; Jia, Z.; Xu, X.; Cheng, Y.; Zheng, Y.; Xi, T.; Wei, S. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 2014, 67, 185–197.
  • Cano, M.; Khan, U.; Sainsbury, T.; Neill, O.; A.; Wang, Z.; McGovern, I.; Maser, K.W.; Benito, A.M.; Coleman, J.N. Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 2013, 52, 363–371.
  • Zheng, Z.; Zheng, X.; Wang, H.; Du, Q. Macroporous graphene oxide-polymer composite prepared through pickering high internal phase emulsions. ACS Appl. Mater. Interfaces 2013, 5, 7974–7982.
  • Norhakim, N.H.; Ahmad, S.H.J.; Chia, C.H.; Huang, N.M. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malays. 2014, 43, 603–609.
  • Saeed, M.B.; Zhan, M.S. Adhesive strength of nano-size particles filled thermoplastic polyimides. Part-II: Aluminum nitride (AlN) nano-powder-polyimide composite films. Int. J Adhes. Adhes. 2007, 27, 319–329.
  • Anand, K.A.; Agarwal, U.S.; Joseph, R. Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer 2006, 47, 3976–3980.
  • Peng, W.; Huang, X.; Yu, J.; Jiang, P.; Liu, W. Electrical and thermophysical properties of epoxy/aluminum nitridenanocomposites: Effects of nanoparticle surface modification. Composites, Part A 2010, 41, 1201–1209.
  • Yang, J.; Hu, J.; Wang, C.; Qin, Y.; Guo, Z. Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P(MMA-co-EMA) composites. Macromol. Mater. Eng. 2004, 289, 828–832.
  • Liu, C.; Zhang, J.; He, J.; Hu, G. Gelation in carbon nanotube/polymer composites. Polymer 2003, 44, 7529–7532.
  • Wu, S.Y.; Huang, Y.L.; Ma, C.C.M.; Yuen, S.M.; Teng, C.C.; Yang, S.Y. Mechanical, thermal and electrical properties of aluminum nitride/polyetherimide composites. Composites, Part A 2011, 42, 1573–1583.
  • Zhao, H.; Ju, H. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal. Biochem. 2006, 350, 138–144.
  • Livigni, D.J.; Tomlin, N.A.; Cromer, C.L.; Lehman, J.H. Optical fibre-coupled cryogenic radiometer with carbon nanotube absorber. Metrologia 2012, 49, S93–S98.
  • Aboutalebi, S.H.; Chidembo, A.T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H.K.; Dou, S.X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865.
  • Lin, X.; Liu, X.; Jia, J.; Shen, X.; Kim, J.K. Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers. Compos. Sci. Technol. 2014, 100, 166–173.
  • Huang, Z.D.; Zhang, B.; Liang, R.; Zheng, Q.B.; Oh, S.W.; Lin, X.Y.; Yousefi, N.; Kim, J.K. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 2012, 50, 4239–4251.
  • Nguyen, D.D.; Lai, Y.T.; Tai, N.H. Enhanced field emission properties of a reduced graphene oxide/carbon nanotube hybrid film. Diamond Relat. Mater. 2014, 47, 1–6.
  • Cui X.; Lv, R.; Sagar, R.U.R.; Liu, C.; Zhang, Z. Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor. Electrochim. Acta. 2015, 169, 342–350.
  • Kim, Y.K.; Min, D.H. Preparation of scrolled graphene oxides with multi-walled carbon nanotube templates. Carbon 2010, 48, 4283–4288.
  • Wang, S.C.; Yang, J.; Zhou, X.Y.; Jie, L. Layer-by-layer assembled sandwich-like carbon nanotubes/graphene oxide composite as high-performance electrodes for lithium-ion batteries. Int. J. Electrochem. Sci. 2013, 8, 9692–9703.
  • Wang, Q.; Li, G.; Zhang, J.; Huang, F.; Lu, K.; Wei, Q. PAN nanofibers reinforced with MMT/GO hybrid nanofillers. J. Nanomater. 2014, 2014, 1–10.
  • Kausar, A. Bucky papers of poly (methyl methacrylate-co-methacrylic acid)/polyamide 6 and graphene oxide-montmorillonite. J. Dispersion Sci. Technol. 2015, 37, 66–72. doi:10.1080/01932691.2015.1027908
  • Liu, L.; Zhang, B.; Zhang, Y.; He, Y.; Huang, L.; Tan, S.; Cai, X. Simultaneous removal of cationic and anionic dyes from environmental water using montmorillonite-pillared graphene oxide. J. Chem. Eng. 2015, 60, 1270–1278.
  • Yadav, M.; Ahmad, S. Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties. Int. J. Biol. Macromol. 2015, 79, 923–933.
  • Huang, W.; Shen, J.; Li, N.; Ye, M. Study on a new polymer/graphene oxide/clay double network hydrogel with improved response rate and mechanical properties. Polym. Eng. Sci. 2015, 55, 1361–1366.
  • Kausar, A. Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. Am. J. Polym. Sci. 2014, 4, 54–62.
  • Wang, Q.; Plylahan, N.; Shelke, M.V.; Devarapalli, R.R.; Li, M.; Subramanian, P.; Djenizian, T.; Boukherroub, R.; Szunerits, S. Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 2014, 68, 175–184
  • Yao, Y.; Xue, Y. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuaters, B 2015, 211, 52–58.
  • Thanh, T.T.; Ba, H.; Phuoc, L.T.; Nhut, J.M.; Ersen, O.; Begin, D.; Janowska, I.; Nguyen, D.L.; Granger, P.; Huu, C.P. A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. J. Mater. Chem. 2014, 2, 11349–11357.
  • Cong, H.P.; Wang, P.; Yu, S.H. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design. Chem. Mater. 2013, 25, 3357–3362.
  • Li, M.; Gao, C.; Hu, H.; Zhao, Z. Electrical conductivity of thermally reduced graphene oxide/polymer composites with a segregated structure. Carbon 2013, 65, 371–373.
  • Ray, S.C.; Bhunia, S.K.; Saha, A.; Jana, N.R. Electric and Ferro-electric behaviour of polymer-coated graphene-oxide thin film. Phys. Procedia 2013, 46, 62–70.
  • Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 2009, 11, 1158–1161.
  • Sun, Y.; Shao, D.; Chen, C.; Yang, S.; Wang, X. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 2013, 47, 9904–9910.
  • Rui, X.; Oo, M.O.; Sim, D.H.; Raghu, S.C.; Yan, Q.; Lim, T.M.; Skyllas-Kazacos, M. Graphene oxide nanosheets/polymer binders as superior electrocatalytic materials for vanadium bromide redox flow batteries. Electrochim. Acta 2012, 85, 175–181.
  • Li, G.L.; Liu, G.; Li, M.; Wan, D.; Neoh, K.G.; Kang, E.T. Organo- and water-dispersible graphene oxide-polymer nanosheets for organic electronic memory and gold nanocomposites. J. Phys. Chem. 2010, 114, 12742–12748.
  • Chaudhuri, B.; Bhadra, D.; Moroni, L.; Pramanik, K. Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: Importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 2015, 7, 015009.
  • Chang, X.; Wang, Z.; Quan, S.; Xu, Y.; Jiang, Z.; Shao, L. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly (vinylylidenefluoride) (PVDF) ultrafiltration membrane performance. Appl. Surf. Sci. 2014, 316, 537–548.
  • Pant, H.R.; Pokharel, P.; Joshi, M.K.; Adhikari, S.; Kim, H.J.; Park, C.H.; Kim, C.S. Processing and characterization of electrospun graphene oxide/polyurethane composite nanofibers for stent coating. Chem. Eng. J. 2015, 270, 336–342.
  • Liu, T.; Zhao, Z.; Tjiu, W.W.; Lv, J.; Wei, C. Preparation and characterization of epoxy nanocomposites containing surface-modified graphene oxide. J. Appl. Polym. Sci. 2014, 131, 1–6.
  • Xiong, J.; Zheng, Z.; Qin, X.; Li, M.; Li, H.; Wang, X. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 2006, 44, 2701–2707.
  • Cadek, M.; Coleman, J.N.; Ryan, K.P.; Nicolosi, V.; Bister, G.; Fonseca, A.; Nagy, J.B.; Szostak, K.; Béguin, F.; Blau, W.J. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 2004, 4, 353–356.
  • Ogasawara, T.; Ishida, Y.; Ishikawa, T.; Yokota, R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Composites, Part A 2004, 35, 67–74.
  • Tang, W.; Santare, M.H.; Advani, S.G. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon 2003, 41, 2779–2785.
  • Zheng, Q.; Xue, Q.; Yan, K.; Gao, X.; Li, Q.; Hao, L. Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer 2008, 49, 800–808.
  • Park, S.S.; Bandaru, P.R. Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages. Polymer 2010, 51, 5071–5077.
  • Zhang, S.; Minus, M.L.; Zhu, L.; Wong, C.P.; Kumar, S. Polymer trans crystallinity induced by carbon nanotubes. Polymer 2008, 49, 1356–1364.
  • Jia, Y.; Peng, K.; Gong, X.L.; Zhang, Z. Creep and recovery of polypropylene/carbon nanotube composites. Int. J. Plast. 2011, 27, 1239–1251.
  • Raheel, M.; Yao, K.; Gong, J.; Liu, D.T.; Lin, Y.C.; Cui, D.M.; Siddiq, M.; Tang, T. Poly (vinyl alcohol)/GO-MMT nanocomposites: Preparation, structure and properties. Chin. J. Polym. Sci. 2015, 33, 329–338.
  • Wang, Q.; Cui, J.; Li, G.; Zhang, J.; Li, D.; Huang, F.; Wei, Q. Laccase immobilized on a pan/adsorbents composite nanofibrous membrane for catechol treatment by a biocatalysis/adsorption process. Molecules 2014, 19, 3376–3388.
  • Huang, Z.D.; Liang, R.; Zhang, B.; He, Y.B.; Kim, J.K. Evolution of flexible 3D graphene oxide/carbon nanotube/polyaniline composite papers and their super capacitive performance. Compos. Sci. Technol. 2013, 88, 126–133.
  • Zhang, Y.; Zhuang, X.; Muthu, J.; Mabrouki, T.; Fontaine, M.; Gong, Y.; Rabczuk, T. Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation. Composites, Part B 2014, 63, 27–33.
  • Zheng, Z.; Wang, Z.; Feng, Q.; Zhang, F.; Du, Y.; Wang, C. Preparation of surface-silvered graphene-CNTs/polyimide hybrid films: Processing, morphology and properties. Mater. Chem. Phys. 2013, 138, 350–357.
  • Patole, A.S.; Patole, S.P.; Jung, S.Y.; Yoo, J.B.; An, J.H.; Kim, T.H. Self-assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur. Polym J. 2012, 48, 252–259.
  • Sibiñski, M.; Jakubowska, M.; Znajdek, K.; Sloma, M.; Guzowski, B. Carbon nanotube transparent conductive layers for solar cells applications. Opt. Appl. 2011, 41, 375–381.
  • Giansante, C.; Lerario, G.; Moretti, L.; Kriegel, I.; Scotognella, F.; Lanzani, G.; Carallo, S.; Esposito, M.; Biasiucci, M.; Rizzo, A.; Gigli, G. Molecular-level control of polymer/nanocrystal interface towards efficient hybrid solar cells. Advanced Functional Materials. 2015, 25, 111–119.
  • Bernardi, M.; Lohrman, J.; Kumar, P.V.; Kirkeminde, A.; Ferralis, N.; Grossman, J.C.; Ren, S. Nanocarbon-based photovoltaics. ACS Nano 2012, 6, 8896–8903.
  • Bell, J.M.; Giulianini, M.; Goh, R.; Motta, N.; Waclawik, E. Polymer-carbon nanotube composites: Basic science and applications. Mater. Forum 2008, 32, 144–152.
  • Park, S.Y.; Kim, W.D.; Kim, D.G.; Kim, J.K.; Jeong, Y.S.; Kim, J.H.; Lee, J.K.; Kim, S.H.; Kang, J.W. Effect of hybrid carbon nanotubes–bimetallic composite particles on the performance of polymer solar cells. Sol. Energy Mater. Sol. Cells. 2010, 94, 750–754.
  • Sun, Y.; Shi, G. Graphene/polymer composites for energy applications. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 231–253.
  • Czímerová, A.; Jankovič, L.; Madejová, J.; Čeklovský, A. Unique photoactive nanocomposites based on rhodamine 6 G/polymer/montmorillonite hybrid systems. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1672–1679.
  • Li, Y.; Wang, P.; Wang, L.; Lin, X. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens. Bioelectron. 2007, 22, 3120–3125.
  • Zhang, X.; Wang, S.; Jia, L.; Xu, Z.; Zeng, Y. An electrochemical sensor for determination of calcium dobesilate based on PoPD/MWNTs composite film modified glassy carbon electrode. J. Biochem. Biophys. Methods 2008, 70, 1203–1209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.