277
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Mixing Intensity on Foaming Behavior of LLDPE/HDPE Blends in Thermal Induced Batch Process

, , , , &

References

  • Utracki, L. Introduction to polymer blends. In: Utracki, L.A.; Wilkie, C., eds. Polymer Blends Handbook, Springer: Netherlands, 2003, Chapter 1; pp. 1–122.
  • White, J.L.; Yang, J. Miscibility and characteristics of polyolefin blends. In: Nwabunma, K.; Kyu, T., eds. Polyolefin Blends, 1st ed., John Wiley and Sons Ltd: Chichester, SXW, 2008, Chapter 2; pp. 27–56.
  • Kim, Y.H.; Jeon, B.J.; Cha, S.W.; Nam, G.J.; Park, C.Y.; Lee, G.J. Relationships between processing parameters and the foaming performances of polyethylene for coaxial cable insulation. Polym. Plast. Technol. Eng. 2008, 47, 1283–1288.
  • Cheremisinoff, N.P. Emerging technologies and applications for polymers. Polym. Plast. Technol. Eng. 1991, 30, 1–26.
  • Emami, M.; Thompson, M.R.; Vlachopoulos, J. Experimental and numerical studies on bubble dynamics in nonpressurized foaming systems. Polym. Eng. Sci. 2013, 54, 1947–1959.
  • Hussein, I.A. Influence of composition distribution and branch content on the miscibility of m-LLDPE and HDPE blends: Rheological investigation. Macromolecules 2003, 36, 2024–2031.
  • Laguna‐Gutierrez, E.; Van Hooghten, R.; Moldenaers, P.; Rodriguez‐Perez, M.A. Understanding the foamability and mechanical properties of foamed polypropylene blends by using extensional rheology. J. Appl. Polym. Sci. 2015, 132, 42430.
  • Wang, M.Y.; Zhou, N.Q.; Jun, H.; Jin, G. Study of the introduction of vibration field and blending modification with polyethylene on microcellular foaming of polycarbonate foam. Polym. Plast. Technol. Eng. 2010, 49, 1597–1605.
  • Lee, J.K.; Han, C.D. Evolution of polymer blend morphology during compounding in a twin-screw extruder. Polymer 2000, 41, 1799–1815.
  • Lee, J.K.; Han, C.D. Evolution of polymer blend morphology during compounding in an internal mixer. Polymer 1999, 40, 6277–6296.
  • Favis, B.D.; Chalifoux, J.-P. The effect of viscosity ratio on the morphology of polypropylene/polycarbonate blends during processing. Polym. Eng. Sci. 1987, 27, 1591–1600.
  • Morris, B.A. Polymer blending for packaging applications. In: Wagner J.R., ed., Multilayer Flexible Packaging: Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, 1st ed., William Andrew Publishing: Rochester, NY, 2009, Chapter 12; pp. 137–160.
  • Yang, L.Y.; Smith, T.G.; Bigio, D. Melt blending of linear low–density polyethylene and polystyrene in a haake internal mixer. I. Compatibilization and morphology development. J. Appl. Polym. Sci. 1995, 58, 117–127.
  • Scott, C.E.; Joung, S.K. Viscosity ratio effects in the compounding of low viscosity, immiscible fluids into polymeric matrices. Polym. Eng. Sci. 1996, 36, 1666–1674.
  • Cho, K.; Lee, B.H.; Hwang, K.M.; Lee, H.; Choe, S. Rheological and mechanical properties in polyethylene blends. Polym. Eng. Sci. 1998, 38, 1969–1975.
  • Ardakani, F.; Jahani, Y.; Morshedian, J. The impact of viscoelastic behavior and viscosity ratio on the phase behavior and morphology of polypropylene/polybutene–1 blends. J. Vinyl Addit. Technol. 2014, 21, 94–101.
  • Mbarek, S.; Jaziri, M.; Chalamet, Y.; Carrot, C.J. Effect of the viscosity ratio on the morphology and properties of PET/HDPE blends with and without compatibilization. Appl. Polym. Sci. 2010, 117, 1683–1694.
  • Yang, K.; Lee, S.H.; Oh, J.M. Effects of viscosity ratio and compatibilizers on the morphology and mechanical properties of polycarbonate/acrylonitrile–butadiene–styrene blends. Polym. Eng. Sci. 1999, 39, 1667–1677.
  • Moly, K.; Oommen, Z.; Bhagawan, S.; Groeninckx, G.; Thomas, S.J. Melt rheology and morphology of LLDPE/EVA blends: effect of blend ratio, compatibilization, and dynamic crosslinking. Appl. Polym. Sci. 2002, 86, 3210–3225.
  • Cao, K.; Li, Y.; Yao, Z.; Zhou, G.D.; Zeng, C.; Huang, Z.M. Morphology evolution of miscible blends between crystalline PA6 and amorphous PA6IcoT. J. Appl. Polym. Sci. 2012, 124, 1447–1455.
  • Abtal, E.; Prud’Homme, R.E. Orientation of miscible and immiscible polymer blends. Polym. Eng. Sci. 1992, 32, 1857–1862.
  • Huneault, M.A.; Mighri, F.; Ko, G.H.; Watanabe, F. Dispersion in high viscosity ratio polyolefin blends. Polym. Eng. Sci. 2001, 41, 672–683.
  • Kissin, Y.V.; Pebsworth, L.W.; Lieberman, R.B.; Lappin, G.; Nemec, L.; Sauer, J.; Wagner, J. Olefin Polymers. In: Considine, G.D., ed. Van Nostrand's Encyclopedia of Chemistry, 5th ed., John Wiley and Sons Ltd: Hoboken, NJ, 2005; pp. 1139–1150.
  • Rezavand, S. A.M.; Behravesh, A.H.; Mahmoodi, M.; Shahi, P. Experimental study on microstructural, surface hardness and flexural strength of injection molded microcellular foamed parts. Cell. Polym. 2009, 28, 405–428.
  • Ahmadzai, A.Z.; Behravesh, A.H.; Shahi, P. A novel approach in mold design in regards to weight reduction of foam injection molded parts. Cell. Polym. 2013, 32, 279–304.
  • Naguib, H.E.; Park, C.B.; Reichelt, N.J. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Appl. Polym. Sci. 2004, 91, 2661–2668.
  • Park, C.B.; Behravesh, A.H.; Venter, R.D. Low density microcellular foam processing in extrusion using CO2. Polym. Eng. Sci. 1998, 38, 1812–1823.
  • Behravesh, A.H.; Park, C.B.; Venter, R.D. Challenge to the production of low-density, fine-cell HDPE foams using CO2. Cell. Polym. 1998, 17, 309–326.
  • Doroudiani, S.; Park, C.B.; Kortschot, M.T. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers. Polym. Eng. Sci. 1996, 36, 2645–2662.
  • Sharudin, R.W.; Nabil, A.; Taki, K.; Ohshima, M.J. Polypropylene–dispersed domain as potential nucleating agent in PS and PMMA solid–state foaming. Appl. Polym. Sci. 2011, 119, 1042–1051.
  • Guo, Z.; Wingert, M.J.; Shen, J.; Lee, L.J.; Tomasko, D.L. Foaming dynamics of immisible polymer blends, ANTEC, Cincinnati, Ohio, May 6–11, 2007, 3016–3021.
  • Doroudiani, S.; Park, C.B.; Kortschot, M.T. Processing and characterization of microcellular foamed high density polythylene/isotactic polypropylene blends. Polym. Eng. Sci. 1998, 38, 1205–1215.
  • Rachtanapun, P.; Selke, S.; Matuana, L.J. Effect of the high density polyethylene melt index on the microcellular foaming of high density polyethylene/polypropylene blends. Appl. Polym. Sci. 2004, 93, 364–371.
  • Huang, H.X.; Wang, J.K.; Sun, X.H. J. Improving of cell structure of microcellular foams based on polypropylene/high-density polyethylene blends. Cell. Plast. 2008, 44, 69.
  • Nemoto, T.; Takagi, J.; Ohshima, M. Control of bubble size and location in nano–/microscale cellular poly (propylene)/rubber blend foams. Macromol. Mater. Eng. 2008, 293, 574–580.
  • Nemoto, T.; Takagi, J.; Ohshima, M. Nanoscale cellular foams from a poly (propylene)–rubber blend. Macromol. Mater. Eng. 2008, 293, 991–998.
  • Jiang, X.L. Effects of Blend morphology on the foaming of polypropylene/low-density polyethylene blends during a batch foaming process. J. Cell. Plast. 2009, 45, 225.
  • Behravesh, A.H.; Park, C.B.; Lee, E.K. Formation and characterization of polyethylene blends for autoclave-based expanded foams. Polym. Eng. Sci. 2010, 50, 1161–1167.
  • Yamaguchi, M.; Suzuki, K.I. J. Rheological properties and foam processability for blends of linear and crosslinked polyethylenes. Polym. Sci. Part B Polym. Phys. 2001, 39, 2159–2167.
  • Spitael, P.; Macosko, C.W. Strain hardening in polypropylenes and its role in extrusion foaming. Polym. Eng. Sci. 2004, 44, 2090–2100.
  • Yang, Y.; Zhang, H.; Zheng, W. The microcellular foaming of polycarbonate/polystyrene blends. Polym. Plast. Technol. Eng. 2010, 49, 1214–1222.
  • Han, X.; Shen, J.; Huang, H.; Tomasko, D.L.; Lee, L. CO2 foaming based on polystyrene/poly (methyl methacrylate) blend and nanoclay. J. Polym. Eng. Sci. 2007, 47, 103–111.
  • Dealy, J.M.; Wissbrun, K.F. Melt Rheology and its Role in Plastics Processing, Springer: London, UK, 1990.
  • Peacock, A. Handbook of Polyethylene: Structures: Properties, and Applications, CRC Press: Boca Raton, 2000.
  • Constantin, D. Linear-low-density polyethylene melt rheology: Extensibility and extrusion defects. Polym. Eng. Sci. 1984, 24, 268–274.
  • Zahavich, A.T.P.; Latto, B.; Takacs, E.; Vlachopoulos, J. The effect of multiple extrusion passes during recycling of high density polyethylene. Adv. Polym. Technol. 1997, 16, 11–24.
  • Shahi, P.; Behravesh, A.H.; Daryabari, S.Y.; Lotfi, M. Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polym. Compos. 2012, 33, 753–763.
  • Pinheiro, L.; Chinelatto, M.; Canevarolo, S. The role of chain scission and chain branching in high density polyethylene during thermo-mechanical degradation. Polym. Degrad. Stab. 2004, 86, 445–453.
  • Cruz, S.; Zanin, M. Evaluation and identification of degradative processes in post-consumer recycled high-density polyethylene. Polym. Degrad. Stab. 2003, 80, 31–37.
  • Dostál, J.; Kašpárková, V.; Zatloukal, M.; Muras, J.; Šimek, L. Influence of the repeated extrusion on the degradation of polyethylene. Structural changes in low density polyethylene. Eur. Polym. J. 2008, 44, 2652–2658.
  • Loultcheva, M.K.; Proietto, M.; Jilov, N.; La Mantia, F. Recycling of high density polyethylene containers. Polym. Degrad. Stab. 1997, 57, 77–81.
  • Jin, H.; Gonzalez-Gutierrez, J.; Oblak, P.; Zupančič, B.; Emri, I. The effect of extensive mechanical recycling on the properties of low density polyethylene. Polym. Degrad. Stab. 2012, 97, 2262–2272.
  • Oblak, P.; Gonzalez-Gutierrez, J.; Zupančič, B.; Aulova, A.; Emri, I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 2015, 114, 133–145.
  • Rachtanapun, P.; Selke, S.; Matuana, L. Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J. Appl. Polym. Sci. 2003, 88, 2842–2850.
  • Rachtanapun, P.; Selke, S.; Matuana, L.J. Effect of the high–density polyethylene melt index on the microcellular foaming of high–density polyethylene/polypropylene blends. J. Appl. Polym. Sci. 2004, 93, 364–371.
  • Wolfrom, R.L. The language of particle size. J. GXP Compliance 2011, 15, 10.
  • Liu, C.; Wang, J.; He, J. Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer 2002, 43, 3811–3818.
  • Yao, Z.; Xu, L.-J.; Zhu, F.-J.; Zhang, Y.-F.; Zeng, C.; Cao, K. Solubility of subcritical and supercritical propylene in the semicrystalline polyethylenes. J. Chem. Eng. Data 2015, 60, 3033–3038.
  • Chmelař, J.; Smolná, K.; Haškovcová, K.; Podivinská, M.; Maršálek, J.; Kosek, J. Equilibrium sorption of ethylene in polyethylene: Experimental study and PC-SAFT simulations. Polymer 2015, 59, 270–277.
  • Moore, S.J.; Wanke, S.E. Solubility of ethylene, 1-butene and 1-hexene in polyethylenes. Chem. Eng. Sci. 2001, 56, 4121–4129.
  • Goodrich, J.E.; Porter, R.S. A rheological interpretation of torque–rheometer data. Polym. Eng. Sci. 1967, 7, 45–51.
  • Yang, L.Y.; Bigio, D.; Smith, T.G. Melt blending of linear low–density polyethylene and polystyrene in a Haake internal mixer. II. Morphology–processing relationships. J. Appl. Polym. Sci. 1995, 58, 129–141.
  • Mathot, V.; Pijpers, M.J. Molecular structure, melting behavior, and crystallinity of 1–octene–based very low density polyethylenes (VLDPEs) as studied by fractionation and heat capacity measurements with DSC. Appl. Polym. Sci. 1990, 39, 979–994.
  • Schmidt, H.W.; Müller, A.H. Complex Macromolecular Systems, Springer: Heidelberg, BW, 2010.
  • Sutanto, P.; Laksmana, F.; Picchioni, F.; Janssen, L. Modeling on the kinetics of an EPDM devulcanization in an internal batch mixer using an amine as the devulcanizing agent. Chem. Eng. Sci. 2006, 61, 6442–6453.
  • Bousmina, M.; Ait-Kadi, A.; Faisant, J. Determination of shear rate and viscosity from batch mixer data. J. Rheology (1978-present) 1999, 43, 415–433.
  • Pastorini, M.T.; Nunes, R.C.R. Rheological characterization of ABS, PC, and their blends through the interpretation of torque rheometer data. Polym. Plast. Technol. Eng. 2002, 41, 161–169.
  • Wen, Y.H.; Lin, H.C.; Li, C.H.; Hua, C.C. An experimental appraisal of the Cox–Merz rule and Laun's rule based on bidisperse entangled polystyrene solutions. Polymer 2004, 45, 8551–8559.
  • Vlachopoulos, J.; Strutt, D. Rheology of molten polymers. In: Wagner J.R., ed. Multilayer Flexible Packaging: Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, William Andrew: Rochester, NY, 2009, Chapter 5; p. 57.
  • Cox, W.; Merz, E. Correlation of dynamic and steady flow viscosities. J. Polym. Sci. 1958, 28, 619–622.
  • Ramos, V.D.; da Costa, H.M.; Pereira, A.O.; Rocha, M.C.; Gomes, A.D.S. Study of low concentrations of dicumyl peroxide on the molecular structure modification of LLDPE by reactive extrusion. Polym. Test. 2004, 23, 949–955.
  • Zhang, X.; Yang, H.; Song, Y.; Zheng, Q. The microcellular foaming of polycarbonate/polystyrene blends. Polymer 2012, 53, 3035–3042.
  • Wu, J.; Wu, Z.L.; Yang, H.; Zheng, Q. The microcellular foaming of polycarbonate/polystyrene blends. RSC Adv. 2014, 4, 44030–44038.
  • Wagner, M.H.; Kheirandish, S.; Yamaguchi, M. Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol. Acta 2004, 44, 198–218.
  • Vega, J.; Martinez-Salazar, J.; Trujillo, M.; Arnal, M.; Muller, A.; Bredeau, S.; Dubois, P. Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 2009, 42, 4719–4727.
  • Jaggi, H.S.; Satapathy, B.K.; Ray, A.R. Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J. Polym. Res. 2014, 21, 1–13.
  • Lohse, D.; Milner, S.; Fetters, L.; Xenidou, M.; Hadjichristidis, N.; Mendelson, R.; Garcia-Franco, C.; Lyon, M. Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 2002, 35, 3066–3075.
  • García-Franco, C.A.; Lohse, D.J.; Robertson, C.G.; Georjon, O. Relative quantification of long chain branching in essentially linear polyethylenes. Eur. Polym. J. 2008, 44, 376–391.
  • Wood-Adams, P.M.; Dealy, J.M.; Degroot, A.W.; Redwine, O.D. Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 2000, 33, 7489–7499.
  • Trinkle, S.; Walter, P.; Friedrich, C. Van Gurp-Palmen plot II–classification of long chain branched polymers by their topology. Rheol. Acta 2002, 41, 103–113.
  • Maroufkhani, M.; Ebrahimi, N.G. Melt rheology of linear and long-chain branched polypropylene blends. Iran. Polym. J. 2015, 24, 715–724.
  • Borsig, E.; Van Duin, M.; Gotsis, A.; Picchioni, F. Long chain branching on linear polypropylene by solid state reactions. Eur. Polym. J. 2008, 44, 200–212.
  • Kjøniksen, A.-L.; Nyström, B. Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinyl alcohol) near the gelation threshold. Macromolecules 1996, 29, 5215–5222.
  • Ding, W.; Kuboki, T.; Wong, A.; Park, C.B.; Sain, M. Rheology, thermal properties, and foaming behavior of high d-content polylactic acid/cellulose nanofiber composites. RSC Adv. 2015, 5, 91544–91557.
  • Behravesh, A.; Park, C.; Pan, M.; Venter, R. D. Effective suppression of cell coalescence during chapping in the extrusion of microcellular HIPS foams. Polym. Prepr. (USA) 1996, 37, 767–768.
  • Park, C.B.; Behravesh, A.H.; Venter, R.D. A strategy for the suppression of cell coalescence in the extrusion of microcellular high-impact polystyrene foams. Polym. Foams 1997, 669, 115–129.
  • Taki, K.; Tabata, K.; Kihara, S.I.; Ohshima, M. Bubble coalescence in foaming process of polymers. Polym. Eng. Sci. 2006, 46, 680–690.
  • Zhai, W.; Wang, H.; Yu, J.; Dong, J.; He, J. Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming. Polym. Eng. Sci. 2008, 48, 1312–1321.
  • Feng, J.-M.; Wang, W.-K.; Yang, W.; Xie, B.-H.; Yang, M.-B. Structure and properties of radiation cross-linked polypropylene foam. Polym. Plast. Technol. Eng. 2011, 50, 1027–1034.
  • Zhang, P.; Zhou, N.Q.; Wu, Q.F.; Wang, M.Y.; Peng, X.F. Microcellular foaming of PE/PP blends. J. Appl. Polym. Sci. 2007, 104, 4149–4159.
  • Agarwal, P.K.; Mehta, A.K. Polypropylene copolymer foams and their use, US patent application 6,512,019. 2003.
  • Li, Y.; Yao, Z.; Chen, Z.-H.; Qiu, S.-L.; Zeng, C.; Cao, K. High melt strength polypropylene by ionic modification: Preparation, rheological properties and foaming behaviors. Polymer 2015, 70, 207–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.