288
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Nanoindentation Creep, Nano-Impact, and Thermal Properties of Multiwall Carbon Nanotubes–Polypropylene Nanocomposites Prepared via Melt Blending

, , , &

References

  • Shen, L.; Tjiu, W.C.; Liu, T. Nanoindentation and morphological studies on injection-molded nylon-6 nanocomposites. Polymer 2005, 46(25), 11969–11977.
  • Chafidz, A.; Ali, M.A.-H.; Elleithy, R. Morphological, thermal, rheological, and mechanical properties of polypropylene-nanoclay composites prepared from masterbatch in a twin screw extruder. J. Mater. Sci. 2011, 46(18), 6075–6086.
  • Chafidz, A.; Ali, I.; Ali Mohsin, M.E.; Elleithy, R.; Al-Zahrani, S. Atomic force microscopy, thermal, viscoelastic and mechanical properties of HDPE/CaCO3 nanocomposites. J. Polym. Res. 2012, 19(4), 9860–9876.
  • Liu, T.; Phang, I.Y.; Shen, L.; Chow, S.Y.; Zhang, W.-D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004, 37(19), 7214–7222.
  • Zhang, W.D.; Shen, L.; Phang, I.Y.; Liu, T. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 2004, 37(2), 256–259.
  • Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39(16), 5194–5205.
  • Chafidz, A.; Kaavessina, M.; Al‐Zahrani, S.; Ali, I. Multiwall carbon nanotubes filled polypropylene nanocomposites: Rheological and electrical properties. Polym. Eng. Sci. 2014, 54(5), 1134–1143.
  • Tabuani, D.; Granelli, W.; Camino, G.; Claes, M. Polypropylene based carbon nanotubes composites: Structure and properties. e-Polymers 2008, 8(1), 1178–1189.
  • Vega, J.F.; Martínez-Salazar, J.; Trujillo, M.; Arnal, M.L.; Müller, A.J.; Bredeau, S.; Dubois, P. Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromolecules 2009, 42(13), 4719–4727.
  • Trujillo, M.; Arnal, M.L.; Müller, A.J.; Laredo, E.; Bredeau, S.; Bonduel, D.; Dubois, P. Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules 2007, 40(17), 6268–6276.
  • Beake, B.D.; Leggett, G.J.; Alexander, M.R. Characterisation of the mechanical properties of plasma-polymerised coatings by nanoindentation and nanotribology. J. Mater. Sci. 2002, 37(22), 4919–4927.
  • Tehrani, M.; Safdari, M.; Al-Haik, M.S. Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int. J. Plast. 2011, 27(6), 887–901.
  • Goodall, R.; Clyne, T.W. A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 2006, 54(20), 5489–5499.
  • Ganß, M.; Satapathy, B.K.; Thunga, M.; Weidisch, R.; Pötschke, P.; Janke, A. Temperature dependence of creep behavior of PP–MWNT nanocomposites. Macromol. Rapid Commun. 2007, 28(16), 1624–1633.
  • Beake, B.D.; Bell, G.A.; Brostow, W.; Chonkaew, W. Nanoindentation creep and glass transition temperatures in polymers. Polym. Int. 2007, 56(6), 773–778.
  • Jia, Y.; Peng, K.; Gong, X.-L.; Zhang, Z. Creep and recovery of polypropylene/carbon nanotube composites. Int. J. Plast. 2011, 27(8), 1239–1251.
  • Beake, B.D.; Goodes, S.R.; Smith, J.F.; Madani, R.; Rego, C.A.; Cherry, R.I.; Wagner, T. Investigating the fracture resistance and adhesion of DLC films with micro-impact testing. Diamond Relat. Mater. 2002, 11(8), 1606–1609.
  • Constantinides, G. Quantifying deformation and energy dissipation of polymeric surfaces under localized impact. Mater. Sci. Eng. A 2008, 489, 403–412.
  • Constantinides, G.; Tweedie, C.A.; Savva, N.; Smith, J.F.; Vliet, K.J. Quantitative impact testing of energy dissipation at surfaces. Exp. Mech. 2008, 49(4), 511–522.
  • Manchado, M.A.L.; Valentini, L.; Biagiotti, J.; Kenny, J.M. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 2005, 43(7), 1499–1505.
  • Mayo, M.J.; Siegel, R.W.; Narayanasamy, A.; Nix, W.D. Mechanical properties of nanophase TiO2 as determined by nanoindentation. J. Mater. Res. 1990, 5(5), 1073–1082.
  • Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19(1), 3–20.
  • Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7(06), 1564–1583.
  • Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Nanoindentation behaviour of layered silicate reinforced unsaturated polyester nanocomposites. Polym. Test. 2006, 25(6), 846–852.
  • Adewole, J.K.; Al-Mubaiyedh, U.A.; Ul-Hamid, A.; Al-Juhani, A.A.; Hussein, I.A. Bulk and surface mechanical properties of clay modified HDPE used in liner applications. Can. J. Chem. Eng. 2012, 90(4), 1066–1078.
  • Bhushan, B.; Li, X. Nanomechanical characterisation of solid surfaces and thin films. Int. Mater. Rev. 2003, 48(3), 125–164.
  • Liu, Y.; Huang, C.; Bei, H.; He, X.; Hu, W. Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys. Mater. Lett. 2012, 70, 26–29.
  • Cao, Z.; Zhang, X. Nanoindentation creep of plasma-enhanced chemical vapor deposited silicon oxide thin films. Scr. Mater. 2007, 56(3), 249–252.
  • Li, H.; Ngan, A. Size effects of nanoindentation creep. J. Mater. Res. 2004, 19(02), 513–522.
  • Chudoba, T.; Richter, F. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coat. Technol. 2001, 148(2–3), 191–198.
  • Fischer-Cripps, A.C. A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng. A 2004, 385(1–2), 74–82.
  • Shepherd, T.N.; Zhang, J.; Ovaert, T.C.; Roeder, R.K.; Niebur, G.L. Direct comparison of nanoindentation and macroscopic measurements of bone viscoelasticity. J. Mech. Behav. Biomed. Mater. 2011, 4, 8.
  • Wu, Z.; Baker, T.A.; Ovaert, T.C.; Niebur, G.L. The effect of holding time on nanoindentation measurements of creep in bone. J. Biomech. 2011, 44(6), 1066–1072.
  • Logakis, E.; Pollatos, E.; Pandis, C.; Peoglos, V.; Zuburtikudis, I.; Delides, C.G.; Vatalis, A.; Gjoka, M.; Syskakis, E.; Viras, K.; Pissis, P. Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos. Sci. Technol. 2010, 70(2), 328–335.
  • Ehrenstein, G.W.; Riedel, G.; Trawiel, P. Thermal Analysis of Plastics: Theory and Practice, Carl Hanser Verlag: Munich, 2004.
  • Razavi-Nouri, M.; Ghorbanzadeh-Ahangari, M.; Fereidoon, A.; Jahanshahi, M. Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym. Test. 2009, 28(1), 46–52.
  • Bikiaris, D.; Vassiliou, A.; Chrissafis, K.; Paraskevopoulos, K.M.; Jannakoudakis, A.; Docoslis, A. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym. Degrad. Stab. 2008, 93(5), 952–967.
  • Bhattacharyya, A.R.; Sreekumar, T.V.; Liu, T.; Kumar, S.; Ericson, L.M.; Hauge, R.H.; Smalley, R.E. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 2003, 44(8), 2373–2377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.