361
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Technical Relevance of Polymer/Cement/Carbon Nanotube Composite: Opportunities and Challenges

, &

References

  • Han, B.; Zhang, L.; Sun, S.; Yu, X.; Dong, X.; Wu, T.; Ou, J. Electrostatic self-assembled carbon nanotube/nano carbon black composite fillers reinforced cement-based materials with multifunctionality. Compos. Part A Appl. Sci. Manufact. 2005, 79, 103–115.
  • Akram, Z.; Kausar, A.; Siddiq, M. A review on polymer/carbon nanotube composite focusing polystyrene microsphere and polystyrene microsphere/modified CNT composite: Preparation, properties and significance. Polym. Plast. Technol. Eng. 2015, 55, 582–603. doi:10.1080/03602559.2015.1098696.
  • Mehwish, N.; Kausar, A.; Siddiq, M. Polyvinylidenefluoride/poly(styrene-butadiene-styrene)/silver nanoparticle-grafted-acid chloride functional MWCNTs-based nanocomposites: Preparation and properties. Polym. Plast. Technol. Eng. 2015, 54, 474–483.
  • Khan, F.; Kausar, A.; Siddiq, M. A review on properties and fabrication techniques of polymer/carbon nanotube composites and polymer intercalated buckypapers. Polym. Plast. Technol. Eng. 2015, 54, 1524–1539.
  • Jabeen, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. A review on polymeric nanocomposites of nanodiamond, carbon nanotube and nanobifiller: Structure, preparation and properties. Polym. Plast. Technol. Eng. 2015, 54, 1379–1409.
  • Ranade, R.; Zhang, J.; Lynch, J.P.; Li, V.C. Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cem. Concr. Res. 2014, 58, 1–12.
  • Dharap, P.; Li, Z.; Nagarajaiah, S.; Barrera, E.V. Nanotube film based on single-wall carbon nanotubes for strain sensing. Nanotechnology 2004, 15, 379.
  • Banthia, N.; Djeridane, S.; Pigeon, M. Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cem. Concr. Res. 1992, 22, 804–814.
  • Li, Z.X.; Yang, X.M.; Li, Z. Application of cement-based piezoelectric sensors for monitoring traffic flows. J. Transport. Eng. 2006, 132, 565–573.
  • Konsta-Gdoutos, M.S.; Aza, C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Comp. 2014, 53, 162–169.
  • Vadlamani, V.K.; Chalivendra, V.B.; Shukla, A.; Yang, S. Sensing of damage in carbon nanotubes and carbon black‐embedded epoxy under tensile loading. Polym. Compos. 2012, 33, 1809–1815.
  • Heeder, N.J.; Shukla, A.; Chalivendra, V.; Yang, S.; Park, K. Electrical response of carbon nanotube reinforced nanocomposites under static and dynamic loading. Exp. Mech. 2012, 52, 315–322.
  • Duan, W.H.; Wang, Q.; Collins, F. Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chem. Sci. 2011, 2, 1407–1413.
  • Kim, H.K.; Park, I.S.; Lee, H.K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Compos. Struct. 2014, 116, 713–719.
  • Blanch, A.J.; Lenehan, C.E.; Quinton, J.S. Parametric analysis of sonication and centrifugation variables for dispersion of single walled carbon nanotubes in aqueous solutions of sodium dodecylbenzene sulfonate. Carbon 2011, 49, 5213–5228.
  • Hilding, J.; Grulke, E.A.; George Zhang, Z.; Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 2003, 24, 1–41.
  • Metaxa, Z.S.; Seo, J.W.T.; Konsta-Gdoutos, M.S.; Hersam, M.C.; Shah, S.P. Highly concentrated carbon nanotube admixture for nano-fiber reinforced cementitious materials. Cem. Concr. Res. Compos. 2012, 34, 612–617.
  • Inam, F.; Vo, T.; Jones, J.P.; Lee, X. Effect of carbon nanotube lengths on the mechanical properties of epoxy resin: An experimental study. J. Compos. Mater. 2013, 47, 2321–2330.
  • Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.M.; Duan, W.H. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015, 85, 212–220.
  • Zhang, Q.; Li, V.C. Development of durable spray-applied fire-resistive engineered cementitious composites (SFR-ECC). Cem. Concr. Compos. 2015, 60, 10–16.
  • Gann, R.G.; Hamins, A.; McGrattan, K.; Nelson, H.E.; Ohlemiller, T.J.; Prasad, K.R.; Pitts, W.M. Reconstruction of the fires and thermal environment in World Trade Center buildings 1, 2, and 7. Fire Technol. 2013, 49, 679–707.
  • Braxtan, N.L.; Pessiki, S.P. Postearthquake fire performance of sprayed fire-resistive material on steel moment frames. J. Struct. Eng. 2011, 137, 946–953.
  • Keller, W.J.; Pessiki, S. Effect of earthquake-induced damage to spray-applied fire-resistive insulation on the response of steel moment-frame beam-column connections during fire exposure. J. Fire Protect. Eng. 2012, 22, 271–299.
  • Ryder, N.L.; Wolin, S.D.; Milke, J.A. An investigation of the reduction in fire resistance of steel columns caused by loss of spray-applied fire protection. J. Fire Protect. Eng. 2002, 12, 31–44.
  • Aizawa, S.; Kakizawa, T.; Higasino, M. Case studies of smart materials for civil structures. Smart Mater. Struct. 1998, 7, 617.
  • Milke, J.A.; Ryder, N.; Wolin, S. Analyses of the impact of loss of spray-applied fire protection on the fire resistance of steel columns. Fire Safe. Sci. 2003, 7, 1025–1036.
  • Tzou, H.S.; Lee, H.J.; Arnold, S.M. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechan. Adv. Mater. Struct. 2004, 11, 367–393.
  • Felekoglu, B.; Tosun-Felekoglu, K.; Ranade, R.; Zhang, Q.; Li, V.C. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC. Compos. Part B Eng. 2014, 60, 359–370.
  • Banno, H. Recent developments of piezoelectric composites in Japan. In: Saite, S., ed. Adv Ceramics. Oxford University Press: Oxford, 1988; pp. 8–26.
  • Wetherhold, R.C.; Panthalingal, N. Piezoelectric PZT/epoxy composites for sensing and actuating torsional motion. In 1993 North American Conference on Smart Structures and Materials. International Society for Optics and Photonics. Albuquerque, NM, February 1, 1993, 266–274.
  • Wang, R.; Meyer, C. Performance of cement mortar made with recycled high impact polystyrene. Cem. Concr. Compos. 2012, 34, 975–981.
  • Sakai, E.; Nikaido, Y.; Itoh, T.; Daimon, M. Ettringite formation and microstructure of rapid hardening cement. Cem. Concr. Compos. 2004, 34, 1669–1673.
  • Kondo, N.; Nikaido, Y.; Sakai, E.; Daimon, M. Relation between ettringite formation and the development of strength for rapid hardening cement. Proceedings of the 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden, 1997, 2, 2ii017.
  • Teramura, S.; Matsunaga, Y.; Hirano, K.; Handa, M.; Sakai, E. 1993. Accelerator for shotcerete based amorphos calcium aluminate. In Shotcrete for Underground Support VI. ASCE; pp. 9–16.
  • Kim, S.W.; Park, J.J.; Kang, S.T.; Ryo, G.S.; Koh, K.T. Development of ultra high performance cementitious composites (UHPCC) in Korea. In Proceedings of the 4th International IABMAS Conference, Seoul, Korea, 2008, 110.
  • Yoo, D.Y.; Park, J.J.; Kim, S.W.; Yoon, Y.S. Characteristics of early-age restrained shrinkage and tensile creep of ultra-high performance cementitious composites (UHPCC). J. Korea Concr. Institut. 2011, 23, 581–590.
  • Yoo, D.Y.; Park, J.J.; Kim, S.W.; Yoon, Y.S. Early age setting, shrinkage and tensile characteristics of ultra-high performance fiber reinforced concrete. Construct. Build. Mater. 2013, 41, 427–438.
  • Kamen, A.; Denarié, E.; Sadouki, H.; Brühwiler, E. UHPFRC tensile creep at early age. Mater. Struct. 2009, 42, 113–122.
  • Yarmakovsky, V.N.; Pustovgar, A.P. The scientific basis for the creation of a composite binders class, characterized of the low heat conductivity and low sorption activity of cement stone. Procedia Eng. 2015, 111, 864–870.
  • Gao, X.S.; Han, B.G.; Ou, J.P. Absorption property experiment and stealthy effectiveness analysis of steel fiber cement based materials. J. Funct. Mater. 2006, 37, 1683.
  • Bao-guo, H.; Jin-ping, O. Humidity sensing property of cements with added carbon. New Carbon Mater. 2008, 23, 382–384.
  • Chung, D.D. Self-monitoring structural materials. Mater. Sci. Eng. R. Rep. 1998, 22, 57–78.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 56, 354.
  • Dadras, S.; Farahani, M.V. The effects of carbon nano tubes on electric and dielectric properties of CNTs doped KBr (CNTs/KBr) compound. Phys. B Condens. Matt. 2015, 477, 94–99.
  • Lu, C.; Mai, Y.W. Anomalous electrical conductivity and percolation in carbon nanotube composites. J. Mater. Sci. 2008, 43, 6012–6015.
  • Aguilar, J.O.; Bautista-Quijano, J.R.; Avilés, F. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym. 2010, 4, 292–299.
  • Tománek, D.; Kwon, Y.K. Electronic and structural properties of multi-wall carbon nanotubes. In APS March Meeting Abstracts. March 16–20, 1998, Los Angeles, CA.
  • Parveen, S.; Rana, S.; Fangueiro, R. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater. 2013, 80, 1–19.
  • Chen, S.J.; Collins, F.G.; Macleod, A.J.N.; Pan, Z.; Duan, W.H.; Wang, C.M. Carbon nanotube–cement composites: A retrospect. IES J. Part A Civil Struct. Eng. 2011, 4, 254–265.
  • Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227.
  • Saafi, M. Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 2009, 20, 395502.
  • Chen, S.J.; Zou, B.; Collins, F.; Zhao, X.L.; Majumber, M.; Duan, W.H. Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon 2014, 77, 1–10.
  • Makar, J. The effect of SWCNT and other nanomaterials on cement hydration and reinforcement. In Nanotechnology in Civil Infrastructure, Springer, Berlin, Heidelberg. 2011, 103–130.
  • Hou, P.X.; Liu, C.; Cheng, H.M. Purification of carbon nanotubes. Carbon 2008, 46, 2003–2025.
  • Zhang, M.; Fang, S.; Zakhidov, A.A.; Lee, S.B.; Aliev, A.E.; Williams, C.D.; Baughman, R.H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215–1219.
  • Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–1344.
  • Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.
  • He, X.J.; Du, J.H.; Ying, Z.; Cheng, H.M. Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl. Phys. Lett. 2005, 86, 062112.
  • Calvert, P. Nanotube composites: A recipe for strength. Nature 1999, 399, 210–211.
  • Martin, C.R.; Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29–37.
  • Liu, C.; Fan, Y.Y.; Liu, M.; Cong, H.T.; Cheng, H.M.; Dresselhaus, M.S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999, 286, 1127–1129.
  • Won, J.P.; Kang, H.B.; Lee, S.J.; Lee, S.W.; Kang, J.W. Thermal characteristics of high-strength polymer–cement composites with lightweight aggregates and polypropylene fiber. Construct. Build. Mater. 2011, 25, 3810–3819.
  • Dongyu, X.; Xin, C.; Xiaojing, G.; Shifeng, H. Design, fabrication and property investigation of cement/polymer based 1–3 connectivity piezo-damping composites. Construct. Build. Mater. 2015, 84, 219–223.
  • Leung, C.K.; Grasley, Z.C. Effect of micrometric and nanometric viscoelastic inclusions on mechanical damping behavior of cementitious composites. Construct. Build. Mater. 2012, 35, 444–451.
  • Kaneko, H.; Inoue, K.; Tominaga, Y.; Asai, S.; Sumita, M. Damping performance of polymer blend/organic filler hybrid materials with selective compatibility. Mater. Lett. 2002, 52, 96–99.
  • Sumita, M.; Gohda, H.; Asai, S.; Miyasaka, K.; Furuta, A.; Suzuki, Y.; Uchino, K. New damping materials composed of piezoelectric and electro‐conductive, particle‐filled polymer composites: Effect of the electromechanical coupling factor. Macromol. Chem. Rap. Commun. 1991, 12, 657–661.
  • Wang, R.; Li, X.G.; Wang, P.M. Influence of polymer on cement hydration in SBR-modified cement pastes. Cem. Concer. Res. 2006, 36, 1744–1751.
  • de Andrade Silva, F.; Mobasher, B.; Toledo Filho, R.D. Cracking mechanisms in durable sisal fiber reinforced cement composites. Cem. Concer. Compos. 2009, 31, 721–730.
  • Chakraborty, S.; Kundu, S.P.; Roy, A.; Basak, R.K.; Adhikari, B.; Majumder, S.B. Improvement of the mechanical properties of jute fibre reinforced cement mortar: A statistical approach. Construct. Build. Mater. 2013, 38, 776–784.
  • Savastano, H.; Santos, S.F.; Radonjic, M.; Soboyejo, W.O. Fracture and fatigue of natural fiber-reinforced cementitious composites. Cem. Concer. Compos. 2009, 31, 232–243.
  • Kundu, S.P.; Chakraborty, S.; Roy, A.; Adhikari, B.; Majumder, S.B. Chemically modified jute fibre reinforced non-pressure (NP) concrete pipes with improved mechanical properties. Construct. Build. Mater. 2012, 37, 841–850.
  • Chandra, S.; Flodin, P. Interactions of polymers and organic admixtures on portland cement hydration. Cem. Concer. Res. 1987, 17, 875–890.
  • Larbi, J.A.; Bijen, J.M. Interaction of polymers with Portland cement during hydration: a study of the chemistry of the pore solution of polymer-modified cement systems. Cem. Concer. Res. 1990, 20, 139–147.
  • Chakraborty, S.; Kundu, S.P.; Roy, A.; Adhikari, B.; Majumder, S.B. Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Construct. Build. Mater. 2013, 49, 214–222.
  • Pourjavadi, A.; Aghajani, V.; Ghasemzadeh, H. Synthesis, characterization and swelling behavior of chitosan-sucrose as a novel full-polysaccharide superabsorbent hydrogel. J. Appl. Polym. Sci. 2008, 109, 2648–2655.
  • Song, X.F.; Wei, J.F.; He, T.S. A method to repair concrete leakage through cracks by synthesizing super-absorbent resin in situ. Construct. Build. Mater. 2009, 23, 386–391.
  • Gao, D.; Heimann, R.B., Alexander, D.B. Box-Behnken design applied to study the strengthening of aluminate concrete modified by a superabsorbent polymer/clay composite. Adv. Cem. Res. 1997, 9, 93–97.
  • Song, X.F.; Wei, J.F.; He, T.S. A novel method to improve sulfate resistance of concrete by surface treatment with super-absorbent resin synthesised in situ. Mag. Concrete Res. 2008, 60, 49–55.
  • Tsuji, M.; Shitama, K.; Isobe, D. Basic studies on simplified curing technique, and prevention of initial cracking and leakage of water through cracks of concrete by applying superabsorbent polymers as new concrete admixture. J. Soc. Mater. Sci. Japan. 1999, 48, 1308–1315.
  • Pourjavadi, A.; Fakoorpoor, S.M.; Hosseini, P.; Khaloo, A. Interactions between superabsorbent polymers and cement-based composites incorporating colloidal silica nanoparticles. Cem. Concr. Compos. 2013, 37, 196–204.
  • Sakai, E.; Sugita, J. Composite mechanism of polymer modified cement. Cem. Concr. Res. 1995, 25, 127–135.
  • Stancato, A.C.; Burke, A.K.; Beraldo, A.L. Mechanism of a vegetable waste composite with polymer-modified cement (VWCPMC). Cem. Concr. Compos. 2005, 27, 599–603.
  • Ormsby, R.; McNally, T.; O'Hare, P.; Burke, G.; Mitchell, C.; Dunne, N. Fatigue and biocompatibility properties of a poly (methyl methacrylate) bone cement with multi-walled carbon nanotubes. Acta Biomater. 2012, 8, 1201–1212.
  • Kuehn, K.D.; Ege, W.; Gopp, U. Acrylic bone cements: Composition and properties. Orthop. Clin. North Am. 2005, 36, 17–28.
  • Ormsby, R.; McNally, T.; Mitchell, C.; Dunne, N. Influence of multiwall carbon nanotube functionality and loading on mechanical properties of PMMA/MWCNT bone cements. J. Mater. Sci. Mater. Med. 2010, 21, 2287–2292.
  • Shvedova, A.A.; Kisin, E.R.; Porter, D.; Schulte, P.; Kagan, V.E.; Fadeel, B.; Castranova, V. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharm. Therapeut. 2009, 121, 192–204.
  • Li, Z.; Dong, B.; Zhang, D. Influence of polarization on properties of 0–3 cement-based PZT composites. Cem. Concr. Compos. 2005, 27, 27–32.
  • Newnham, R.E.; Safari, A.; Giniewicz, J.; Fox, B.H. Composite piezoelectric sensors. Ferroelectrics 1984, 60, 15–21.
  • Garcia, E.; Jones, L.D. Self-sensing control applied to smart material systems. In: Guran, A.; Tzou, H.S. eds. Structronic Systems—Smart Structures, Devices, and Systems Materials and Structures, Vol. 1, 1998; pp. 37–60.
  • Nalwa, H.S. (ed.). Ferroelectric Polymers: Chemistry: Physics, and Applications. New York: CRC Press, 1995, 539–610.
  • Dong, B.; Li, Z. Cement-based piezoelectric ceramic smart composites. Compos. Sci. Technol. 2005, 65, 1363–1371.
  • Marzouk, O.Y.; Dheilly, R.M.; Queneudec, M. Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manag. 2007, 27, 310–318.
  • Akçaözoğlu, S.; Atiş, C.D.; Akçaözoğlu, K. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manag. 2010, 30, 285–290.
  • Frigione, M. Recycling of PET bottles as fine aggregate in concrete. Waste Manag. 2010, 30, 1101–1106.
  • Kou, S.C.; Lee, G.; Poon, C.S.; Lai, W.L. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manag. 2009, 29, 621–628.
  • Batayneh, M.; Marie, I.; Asi, I. Use of selected waste materials in concrete mixes. Waste Manag. 2007, 27, 1870–1876.
  • Panyakapo, P.; Panyakapo, M. Reuse of thermosetting plastic waste for lightweight concrete. Waste Manag. 2008, 28, 1581–1588.
  • Dweik, H.S.; Ziara, M.M.; Hadidoun, M.S. Enhancing concrete strength and thermal insulation using thermoset plastic waste. Int. J. Polym. Mater. 2008, 57, 635–656.
  • Elzafraney, M.; Soroushian, P.; Deru, M. Development of energy-efficient concrete buildings using recycled plastic aggregates. J. Archit. Eng. 2005, 11, 122–130.
  • Palos, A.; D'Souza, N.A.; Snively, C.T.; Reidy, R.F. Modification of cement mortar with recycled ABS. Cem. Concr. Res. 2001, 31, 1003–1007.
  • Naik, T.R.; Singh, S.S.; Huber, C.O.; Brodersen, B.S. Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res. 1996, 26, 1489–1492.
  • Soroushian, P.; Plasencia, J.; Ravanbakhsh, S. Assessment of reinforcing effects of recycled plastic and paper in concrete. ACI Mater. J. 2003, 100 (3), 203–207.
  • Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.H.J.; Song, Y.C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 232–240.
  • Jo, B.W.; Park, S.K.; Kim, C.H. Mechanical properties of polyester polymer concrete using recycled polyethylene terephthalate. ACI Struct. J. 2006, 103, 219–225.
  • Rebeiz, K.S.; Fowler, D.W.; Paul, D.R. Polymer concrete and polymer mortar using resins based on recycled poly (ethylene terephthalate). J. Appl. Polym. Sci. 1992, 44, 1649–1655.
  • Li, V.C. On engineered cementitious composites (ECC). J. Adv. Concr. Technol. 2003, 1, 215–230.
  • Zhang, Q.; Li, V.C. Adhesive bonding of fire-resistive engineered cementitious composites (ECC) to steel. Construct. Build. Mater. 2014, 64, 431–439.
  • Tan, K.T.; White, C.C.; Hunston, D.L. An adhesion test method for sprayapplied fire resistive materials. Fire Mater. 2011, 35, 245–259.
  • Li, V.C.; Wang, S.; Wu, C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater. J. 2001, 98, 483–492.
  • Li, V.C.; Leung, C.K. Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 1992, 118, 2246–2264.
  • Kim, Y.Y.; Kong, H.J.; Li, V.C. Design of engineered cementitious composite suitable for wet-mixture shotcreting. Mater. J. 2003, 100, 511–518.
  • Shimizu, Y.; Miki, S.; Soga, T.; Itoh, I.; Todoroki, H.; Hosono, T.; Koide, A. Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scr. Mater. 2008, 58, 267–270.
  • Polizu, S.; Savadogo, O.; Poulin, P.; Yahia, L.H. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J. Nanosci. Nanotechnol. 2006, 6, 1883–1904.
  • Coleman, J.N.; Khan, U.; Blau, W.J.; Gunko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652.
  • Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construct. Build. Mater. 2014, 73, 113–124.
  • Zhan, G.D.; Mukherjee, A.K. Carbon nanotube reinforced alumina‐based ceramics with novel mechanical, electrical, and thermal properties. Int. J. Appl. Ceram. Technol. 2004, 1, 161–171.
  • Collins, F.; Sanjayan, J.G. Early age strength and workability of slag pastes activated by NaOH and Na2CO3. Cem. Concr. Res. 1998, 28, 655–664.
  • Li, G.Y.; Wang, P.M.; Zhao, X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007, 29, 377–382.
  • Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115.
  • Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Compos. 2010, 40, 1052–1059.
  • Al-Rub, R.K.A.; Tyson, B.M.; Yazdanbakhsh, A.; Grasley, Z. Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibers. J. Nanomech. Micromech. 2011, 2, 1–6.
  • Tyson, B.M.; Abu Al-Rub, R.K.; Yazdanbakhsh, A.; Grasley, Z. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J. Mater. Civil. Eng. 2011, 23, 1028–1035.
  • Han, B.; Yang, Z.; Shi, X.; Yu, X. Transport properties of carbon-nanotube/cement composites. J. Mater. Civil. Eng. Perform. 2013, 22, 184–189.
  • Collins, F.; Lambert, J.; Duan, W.H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures. Cem. Concr. Compos. 2012, 34, 201–207.
  • De Nicola, F.; Salvato, M.; Cirillo, C.; Crivellari, M.; Boscardin, M.; Scarselli, M.; Nanni, F.; Cacciotti, I.; De Crescenzi, M.; Castrucci, P. Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon. 2016, 101, 226–234.
  • Yu, J.; Grossiord, N.; Koning, C.E.; Loos, J. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 2007, 45, 618–623.
  • Legrand, C.; Wirquin, E. Study of the strength of very young concrete as a function of the amount of hydrates formed—influence of superplasticizer. Mater. Struct. 1994, 27, 106–109.
  • Pagani, G.; Green, M.J.; Poulin, P.; Pasquali, M. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. USA 2012, 109, 11599–11604.
  • Nochaiya, T.; Chaipanich, A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl. Surf. Sci. 2011, 257, 1941–1945.
  • Han, B.; Yu, X.; Ou, J. Multifunctional and smart carbon nanotube reinforced cement-based materials. In Nanotechnology in Civil Infrastructure. Springer: Berlin, Heidelberg, 2011, 1–47.
  • Li, G.Y.; Wang, P.M.; Zhao, X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005, 43, 1239–1245.
  • Chung, D.D.L. Self-heating structural materials. Smart Mater. Struct. 2004, 13 (3), 562.
  • Tuan, C.Y.; Yehia, S. Evaluation of electrically conductive concrete containing carbon products for deicing. ACI Mater. J. 2004, 101, 287–293.
  • Li, H.; Zhang, Q.; Xiao, H. Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Reg. Sci. Technol. 2013, 86, 22–35.
  • Xiang, Z.D.; Chen, T.; Li, Z.M.; Bian, X.C. Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol. Mater. Eng. 2009, 294, 91–95.
  • Zhang, Q.; Li, H. Experimental investigation of road snow-melting based on CNFP self-heating concrete. In SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. International Society for Optical Photon. 2011, 797825–797825.
  • Kim, H.K.; Nam, I.W.; Lee, H.K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Compos. Struct. 2014, 107, 60–69.
  • Li, H.; Xiao, H.G.; Ou, J.P. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cem. Concr. Compos. 2006, 28, 824–828.
  • Salvetat, J.P.; Bonard, J.M.; Thomson, N.H.; Kulik, A.J.; Forro, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A. 1999, 69, 255–260.
  • Ruoff, R.S.; Lorents, D.C. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33, 925–930.
  • Tanaka, K.; Sato, T.; Yamabe, T.; Okahara, K.; Uchida, K., Yumura, M.; Ikazaki, F. Electronic properties of carbon nanotube. Chem. Phys. Lett. 1994, 223, 65–68.
  • Yu, X.; Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 2009, 18, 055010.
  • Cromwell, J.R.; Harries, K.A.; Shahrooz, B.M. Environmental durability of externally bonded FRP materials intended for repair of concrete structures. Construct. Build. Mater. 2011, 25, 2528–2539.
  • Wang, S.; Wen, S.; Chung, D.D.L. Resistance heating using electrically conductive cements. Adv. Cem. Res. 2004, 16, 161–166.
  • Derde, L.J.; Gomand, S.V.; Courtin, C.M.; Delcour, J.A. Moisture distribution during conventional or electrical resistance oven baking of bread dough and subsequent storage. J. Agric. Food Chem. 2014, 62, 6445–6453.
  • Kim, G.M.; Naeem, F.; Kim, H.K.; Lee, H.K. Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites. Compos. Struct. 2016, 136, 162–170.
  • Luo, J.L.; Duan, Z.D.; Zhao, T.J.; Li, Q.Y. Effect of compressive strain on electrical resistivity of carbon nanotube cement-based composites. Key Eng. Mater. 2011, 483, 579–583.
  • Coppola, L.; Buoso, A.; Corazza, F. Electrical properties of carbon nanotubes cement composites for monitoring stress conditions in concrete structures. Appl. Mech. Mater. 2011, 82, 118–123.
  • Han, B.; Yu, X.; Kwon, E.; Ou, J. Effects of CNT concentration level and water/cement ratio on the piezoresistivity of CNT/cement composites. J. Compos. Mater. 2012, 46, 19–25.
  • Metaxa, Z.S.; Konsta-Gdoutos, M.S.; Shah, S.P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 2013, 36, 25–32.
  • Han, B.; Zhang, K.; Yu, X.; Kwon, E.; Ou, J. Fabrication of piezoresistive CNT/CNF cementitious composites with superplasticizer as dispersant. J. Mater. Civil Eng. 2011, 24, 658–665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.