141
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Antimicrobial Properties of Nanogold-Imprinted Starch Bionanocomposites

, &

References

  • Furno, F.; Morley, K.S.; Wong, B.; Sharp, B.L.; Arnold, P.L.; Howdle, S.M.; Bayston, R.; Brown, P.D.; Winship, P.D.; Reid, H.J. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chemother. 2004, 54, 1019–1024.
  • Sawai, J.; Yoshikawa, T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Microbiol. 2004, 96, 803–809.
  • Huang, L.; Li, D.Q.; Lin, Y.J.; Wei, M.; Evans, D.G.; Duan, X. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J. Inorg. Biochem. 2005, 99, 986–993.
  • Daoud, W.A.; Xin, J.H.; Zhang, Y.H. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 2005, 599, 69–75.
  • Coma, V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008, 78, 90–103.
  • Friedman, M.; Henika, P.R.; Mandrell, R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002, 65, 1545–1560.
  • Rojas-Grau, M.A.; Avena-Bustillos, R.J.; Friedman, M.; Henika, P.R.; Martín-Belloso, O.; McHugh, T.H. Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. J. Agric. Food Chem. 2006, 54, 9262–9267.
  • Samir, M.A.S.A.; Alloin, F.; Sanchez, J.-Y.; Dufresne, A. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 2004, 45, 4149–4157.
  • Wu, C.-S. Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym. Degrad. Stability 2003, 80, 127S.
  • Chakraborty, S.; Sahoo, B.; Teraoka, I.; Miller, L.M.; Gross, R.A. Enzyme-catalyzed regio selective modification of starch nanoparticles. Macromolecules 2005, 38, 61–68.
  • Zou, W.; Yu, L.; Liu, X.; Chen, L.; Zhang, X.; Qiuo, D.; Zhang, R. Effects of amylose/amylopectin ratio on starch-based superabsorbent polymers. Carbohydr. Polym. 2012, 87, 1583–1588.
  • Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16.
  • Avella, M.; Errico, M.E.; Laurienzo, P.; Martuscelli, E.; Raimo, M.; Rimedio, R. Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer 2000, 41, 3875–3888.
  • Maolin, Z.; Long, Z.; Fumio, Y.; Tamikazu, K. Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr. Polym. 2004, 57, 83–88.
  • Dash, S.; Kisku, S.K.; Swain, S.K. Effect of nanoclay on morphological, thermal and barrier properties of albumin bovine. Polym. Compos. 2012, 33, 2201–2206.
  • Kisku, S.K.; Swain, S.K. Synthesis and characterization of chitosan/BN composites. J. Am. Ceram. Soc. 2012, 95, 2753–2757.
  • Swain, S.K.; Pradhan, A.K.; Sahu, H.S. Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotube. Carbohydr. Polym. 2013, 94, 663–668.
  • Dash, S.; Swain, S.K. Synthesis of thermal and chemical resistant oxygen barrier starch with reinforcement of nano silicon carbide. Carbohydr. Polym. 2013, 97, 758–763.
  • Ma, X.F.; Yu, J.G.; Wang, N. Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos. Sci. Technol. 2008, 68, 268–273.
  • Bonnet, P.; Albertini, D.; Bizot, H. Amylose/SWNT composites: From solution to film – Synthesis, characterization and properties. Compos. Sci. Technol. 2007, 67, 817–821.
  • Cao, X.D.; Chen, Y.; Chang, P.R. Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J. Appl. Polym. Sci. 2007, 106, 1431–1437.
  • Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769.
  • Hong, B.; Kai, J.; Ren, Y.; Han, J.; Zou, Z.; Ahn, C.H. Highly sensitive rapid, reliable, and automatic cardiovascular disease diagnosis with nanoparticle fluorescence enhancer and MEMS. Adv. Exp. Med. Biol. 2008, 614, 265–273.
  • Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.
  • Chau, C.F.; Wu, S.H.; Yen, G.C. The development of regulations for food nanotechnology. Trend Food Sci. Technol. 2007, 18, 269–280.
  • Raveendran, P.; Fu, J.; Wallen, S.L. Completely “Green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940–13941.
  • Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balasubramanya, R.H. Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol. 2007, 7, 1893–1897.
  • Valodkar, M.; Bhadoria, A.; Pohnerkar, J.; Mohan, M.; Thakore, S. Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles. Carbohydr. Res. 2010, 345, 1767–1773.
  • Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 2375–2382.
  • Jaiswal, S.; Duffy, B.; Jaiswal, A.K.; Stobie, N.; McHale, P. Enhancement of the antibacterial properties of silver nanoparticles using β-cyclodextrin as a capping agent. Int. J. Antimicrob. Agents 2010, 36, 280–283.
  • Salunkhe, R.B.; Patil, S.V.; Salunke, B.K.; Patil, C.D.; Sonawane, A.M. Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Appl. Biochem. Biotechnol. 2011, 165, 221–234.
  • Kalishwaralal, K.; BarathManiKanth, S.; Pandian, S.R.K.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf. B Biointerf. 2010, 79, 340–344.
  • Jefferson, K.K.; Cerca, N. Bacterial–bacterial cell interactions in biofilms: Detection of polysaccharide intercellular adhesins by blotting and confocal microscopy. Meth. Mol. Biol. 2006, 341, 119–126.
  • Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005, 1, 325–327.
  • Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Selvakannan, P.R.; Mandal, S.; Phadtre, S.; Gole, A.; Pasricha, R.; Adhyanthaya, S.; Sastry, M. Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid. Interf. Sci. 2004, 269, 97–102.
  • Selvakannan, P.R.; Mandal, S.; Phadtre, S.; Pasricha, R.; Sastry, M. Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir 2003, 19, 3545–3549.
  • Niemeyer, C.M.; Ceyhan, B.; DNA-directed functionalization of colloidal gold with proteins. Angew. Chem. Int. Ed. 2001, 40, 3685–3688.
  • Gole, A.; Dash, C.; Ramakrishnan, V.; Savikar, S.R.; Mandle, A.B.; Rao, M.; Sastry, M. Pepsin gold colloid conjugates: Preparation, characterization, and enzymatic activity. Langmuir 2001, 17, 1674–1679.
  • Rangnekar, A.; Sarma, T.K.; Singh, A.K.; Deka, J.; Ramesh, A.; Chattopadhyay, A. Retention of enzymatic activity of α -amylase in the reductive synthesis of gold nanoparticles. Langmuir 2007, 23, 5700–5706.
  • Kanaras, A.G.; Wang, Z.; Bates, A.D.; Cosstick, R.; Brust, M. Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems. Angew. Chem. Int. Ed. 2003, 42, 191–194.
  • Debouttiere, P.J.; Roux, S.; Vocanson, F.; Billotey, C.; Beuf, O.; Regiullon, A.F.; Lin, Y.; Rostaing, S.P.; Lamartine, R.; Perriat, P.; Tillement, O. Design of gold nanoparticles for magnetic resonance imaging. Adv. Funct. Mater. 2006, 16, 2330–2339.
  • Regiel-Futyra, A.; Lisk-iewicz, M.K.; Sebastian, V.; Irusta, S.; Arruebo, M.; Stochel, G.; Kyziol, A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. Appl. Mater. Interf. 2015, 7, 1087–1099.
  • Liu, H.; Chaudhary, D.; Yusa, S-i.; Tade, M.O. Glycerol/starch/Na+-montmorillonite nanocomposites: A XRD, FTIR, DSC and 1HNMR study. Carbohydr. Polym. 2011, 83, 1591–1597.
  • Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520.
  • Ciofi, N.; Torsi, L.; Ditaranto, N.; Sabatini, L.; Zambonin, P.G.; Tantillo, G.; Ghibelli, L.; D’Alessio, M.; Bleve-Zacheo, T.; Traversa, E. Antifungal activity of polymer-based copper nanocomposite coatings. Appl. Phys. Lett. 2004, 85, 2417.
  • Ciofi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, P.G.; Traversa, E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 2005, 17, 5255–5262.
  • Fu, G.; Vary, P.S.; Lin, C.T. Anatase TiO2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B 2005, 109, 8889–8898.
  • Yamamoto, O. Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 2001, 3, 642–646.
  • Yamamoto, O.; Komatsu, M.; Sawai, J.; Nakagawa, Z.E. Effect of lattice constant of zinc oxide on antibacterial characteristics. J. Mater. Sci. Mater. Med. 2004, 15, 847–851.
  • Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006, 6, 866–870.
  • Stoimenov, P.K.; Klinger, R.L.; Marchin, G.L.; Klabunde, K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir 2002, 18, 6679–6686.
  • Sahayaraj, K.; Rajesh, S. Bionanoparticles: Synthesis and antimicrobial applications. In: Mendez-Vilas, A., ed. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, Formatex, 2011; pp. 228–244.
  • Ray, S.; Mohan, R.; Singh, J.K.; Samantaray, M.K.; Shaikh, M.M.; Panda, D.; Ghosh, P. Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes. J. Am. Chem. Soc. 2007, 129, 15042–15053.
  • Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346.
  • Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668.
  • Das, S.K.; Das, A.R.; Guha, A.K. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir 2009, 25, 8192–8199.
  • Zhang, Y.; Peng, H.; Huang, W.; Zhou, Y.; Yan, D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. Colloid. Interf. Sci. 2008, 325, 371–376.
  • Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654.
  • Curvelo, A.A.S.; De Carvalho, A.J.F.; Agnelli, J.A.M. Thermoplastic starch cellulosic fiber composite: Preliminary results. Carbohydr. Polym. 2001, 45, 183–188.
  • Shim, J.H.; Lee, B.J.; Cho, Y.W. Thermal stability of unsupported gold nanoparticle: A molecular dynamics study. Surf. Sci. 2002, 512, 262–268.
  • Lee, J.Y.; Liao, Y.; Nagahata, R.; Horiuchi, S. Effect of metal nanoparticles on thermal stabilization of polymers/metal nanocomposites prepared by a one-step dry process. Polymer 2006, 47, 7970–7979.
  • Valodkar, M.; Sharma, P.; Kanchan, D.K.; Thakore, S. Conductivity and antimicrobial properties of silver nanowire-waxy starch nanocomposites. Int. J. Green Nanotechnol. Phys. Chem. 2010, 2, 10–19.
  • Jawaid, M.; Khalil, H.P.S.A.; Hassan, A.; Abdullah, E. Bilayer hybrid nanocomposites: Chemical resistant and physical properties. Bioresources 2013, 7, 2344–2355.
  • Wang, Y.J.; Truong, V.D.; Wang, L. Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydr. Polym. 2003, 52, 327–333.
  • Forssell, P.; Lahtinen, R.; Lahelin, M.; Myllarinen, P. Oxygen permeability of amylose and amylopectin films. Carbohydr. Polym. 2002, 47, 125–129.
  • Gaudina, S.; Lourdina, D.; Forssell, P.M.; Colonnaa, P. Antiplasticisation and oxygen permeability of starch–sorbitol films. Carbohydr. Polym. 2000, 43, 33–37.
  • Cheviron, P.; Gouanve, F.; Espuche E. Starch/silver nanocomposites: Effect of thermal treatment temperature on the morphology, oxygen and water transport properties. Carbohydr. Polym. 2015, 134, 635–645.
  • Abreau, A.S.; Oliveira, M.; Rodrigues, R.M.; Cerqueira, M.A.; Vicente, A.A.; Machado, A.V. Antimicrobial nanostructured starch based films for packaging. Carbohydr. Polym. 2015, 129, 127–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.