187
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Multifunctional PP-Based Nanocomposites Incorporated with Organoclays, Poly(MA-alt-1-Dodecene)-g-SiO2 Nanoparticles and Bioengineering Polyesters in Melt by Reactive Extrusion

, , &

References

  • Ray, S.; Mosto, S.B. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005, 50, 962–1079.
  • Muhammad, M.S.; Lin, O.H.; Akil, Md.H. Preparation and characterization of palm kernel shell/polypropylene biocomposites and their hybrid composites with nanosilica. BioResource. Com. 2013, 8, 1539–1550.
  • Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602.
  • Abu-Sharkh, B.F.; Hamid, H. Degradation study of date palm fiber/polypropylene composites in natural and artificial weathering: Mechanical and thermal analysis. Polym. Degrad. Stab. 2004, 85, 967–973.
  • Khalid, M.; Ratnam, C.T.; Ali Chuah, T.C.; Choong, S.; Thomas, S.Y. Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Mater. Des. 2008, 29, 173–178.
  • Arbelaiz, A.; Fernández, B.; Ramos, J.A.; Retegi, A.; Llano-Ponte, R.; Mondragon, I. Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Comp. Sci. Technol. 2005, 65, 1582–1592.
  • Yang, H.-S.; Kim, H.-J.; Park, H.-J.; Lee, B.-J.; Hwang, T.-S. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos. Struct. 2007, 77, 45–55.
  • Jayaraman, K. Manufacturing sisal–polypropylene composites with minimum fibre degradation. Compos. Sci. Technol. 2003, 63, 367–374.
  • Fuqua, M.A.; Huo, S.; Ulven, C.A. Natural fiber reinforced composites. Polym. Rev. 2012, 52, 259–320.
  • Lee, S.-H.; Teramoto, Y.; Endo, T. Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos. Part A Appl. Sci. Manuf. 2011, 42, 151–156.
  • Domenech, T.; Peuvrel-Disdier, E.; Vergnes, B. The importance of specific mechanical energy during twin screw extrusion of organoclay based polypropylene nanocomposites. Compos. Sci. Technol. 2013, 75, 7–14.
  • Chung, T.C.; Rhubright, D. Polypropylene-graft-polycaprolactone: Synthesis and applicationd in polymer blends. Macomolecules 1994, 27, 1313–1319.
  • Kaneko, H.; Saito, J.; Kawahara, N.; Matsuo, S.; Matsugi, T.; Kashiwa, N. In book: Polypropylene-graft-poly(methyl methacrylate) graft copolymers: Synthesis and compatibilization of polypropylene/polylactide. ACS Symp. Ser. 2009, 1023, Chapter 24, 357–371.
  • Chung, M. Functional polyolefins for energy applications. Macromolecules 2013, 46, 6671–6698.
  • Bret, D.U.; Lakshmi, S.N.; Cato, T.L. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864.
  • Patlolla, A.; Collins, G.; Arinzeh, T.L. Solvent-dependent properties of electrospun nanofibrous scaffold. Acta Biomater. 2010, 6, 90–101.
  • Gunatillake, P.; Mayadunne, R.; Adhikari, R. Recent developments in biodegradable synthetic polymers. Biotechnol. Annu. Rev. 2006, 12, 301–347.
  • Garkhal, K.; Verma, S.; Tikoo, K.; Kumar, N.J. Surface modified poly(L-lactide-co-ϵ-caprolactone) microspheres as scaffold for tissue engineering. Biomed. Mater. Res. A 2007, 82, 747–756.
  • Luciani, A.; Coccoli, V.; Orsi, S.; Ambrosio, L.; Netti, P.A. PCL microspheres based functional scaffolds by bottom-approach with predefined microstructural properties and release profiles. Biomaterials 2008, 29, 4800–4807.
  • Chung, S.; Ingle, N.P.; Montero, G.A.; Kim, S.H.; King, M.W. Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 2010, 6, 1958–1967.
  • Wen, X.; Zhang, K.; Wang, Y.; Han, L.; Han, C.; Zhang, H. Study of the thermal stabilization mechanism of biodegradable poly(L-lactide)/silica nanocomposites. Polym. Int. 2010, 60, 202–210.
  • Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K. New polylactide/layered silicate nanocomposites: Role of organoclay. Chem. Mater. 2002, 14, 4654–4661.
  • Zhang, K.; Jiang, L.; Luo, P.; Jiang, J.; Wu, G. Effect of melt flow on morphology and linear thermal expansion of injection-molded ethylene–propylene–diene terpolymer/isotactic polypropylene blends. Polym. Int. 2015, 64, 1225–1234.
  • Gómez, M.; Bracho, D.; Palza, H.; Quijada, R. Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO2 nanocomposites. Polym. Int. 2015, 64, 1245–1251.
  • Sari, M.G.; Stribeck, N.; Moradian, S.; Zeinolebadi, A.; Bastani, S.; Botta, S.; Bakhshandeh, E. Dynamic mechanical behavior and nanostructure morphology of hyperbranched-modified polypropylene blends. Polym. Int. 2014, 63, 195–205.
  • Costantino, A.; Pettarin, V.; Viana, J.; Pontes, A.; Pouzada, A.; Frontin, P. Morphology−performance relationship of polypropylene−nanoclay composites processed by shear controlled injection moulding. Polym. Int. 2013, 62, 1589–1599.
  • Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Contreras, D.; Muñoz, E. Optimization of processing parameters for the synthesis of low-density polyethylene/organically modified montmorillonite nanocomposites using X-ray diffraction with experimental design. Polym. Int. 2013, 62, 548–553.
  • Song, X.; Zhou, S.; Wang, Y.; Kang, W.; Cheng, B. Mechanical properties and crystallization behavior of polypropylene non-woven fabrics reinforced with POSS and SiO2 nanoparticles. Fiber Polym. 2012, 13, 1015–1022.
  • Barczewski, M.; Chmielewska, D.; Dobrzyriska-Mizera, M.; Dubziec, B.; Sterzyriski, T. Thermal stability and flammability of polypropylene-slsesquioxane nanocomposites. Int. J. Polym. Anal. Charact. 2014, 19, 500–509.
  • Zhang, M.Q.; Rong, M.Z.; Zeng, H.M.; Schmitt, S.; Wetzel, B.; Friedrich, K. Atomic force microscopy study on structure and properties of irradiation grafted silica particles in polypropylene-based nanocomposites. J. Appl. Polym. Sci. 2001, 80, 2218–2227.
  • Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957.
  • Garcia, M.; Van Vliet, G.; Jain, S.; Schrauwen, A.G.; Sarkissiv, A.; Van Zyl, W.E.; Boukamp, B. Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev. Adv. Mater. Sci. 2004, 6, 169–175.
  • Sun, D.; Zhang, R.; Jiu, Z.; Huang, Y.; Wang, Y.; He, J.; Han, B.; Yang, G. Polypropylene/silica nanocomposites by in-situ sol-gel reaction with the aid of CO2. Macromolecules 2005, 36, 617–5624.
  • Bracho, D.; Dougnac, V.N.; Palza, H.; Quijada, R. Functionalization of silica nanoparticles for polypropylene nanocomposite applications. J. Nanomater. 2012, 19, 1–8.
  • Qian, J.; Cheng, G.; Zhang, H.; Xu, Y. Preparation and characterization of polypropylene/silica nanocomposites by gamma irradiation via ultrafine b1. J. Polym. Res. 2011, 18, 409–417.
  • Rzaev, Z.M.O.; Yilmazbayhan, A.; Alper, E. An one step preparation of polypropylene-compatibilizer-clay nanocomposites by reactive extrusion. Adv. Polym. Technol. 2007, 26, 41–56.
  • Güldoğan, Y.; Eğri, S.; Rzaev, Z.M.O.; Pişkin, E. Comparison of MA grafting onto powder and granular polypropylene in the melt by reactive extrusion. J. Appl. Polym. Sci. 2004, 92, 3675–3684.
  • Devrim, Y.; Rzaev, Z.M.O.; Piskin, E. Functionalization of isotactic polypropylene with citraconic anhydride. Polym. Bull. 2007, 59, 447–456.
  • Mittal, K.L. Silane and Other Coupling Agents, VSB BY: AH Zeist, the Netherlands, 1992.
  • Jain, S.; Coossens, H.; Picchioni, E.; Magusin, P.; Mezari, B.; Van Duin, M. Synthetic aspects and characterization of polypropylene-silica nanocomposites prepared via solod-state modification and sol-gel reactions. Polymer 2005, 46, 6666–6681.
  • Bikiaris, D.N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G.P. Compatibilization effect of PP-g-MA copolymer on i-PP/SiO2 nanocomposites prepared by melt mixing. Polym. Int. 2005, 41, 1965–1978.
  • Wu, C.L.; Zhang, M.Q.; Rong, M.Z.; Friedrich, K. Silica nanoparticles filled polypropylene: Effect of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 2002, 65, 635–645.
  • Chen, J.H.; Rong, M.Z.; Ruan, W.H.; Zhang, M.Q. Interfacial enhancement of nano-SiO2/polypropylene composites. Compos. Sci. Technol. 2009, 69, 252–259.
  • Jenkins, R.; Snyder, R.L. Introduction to X-ray Powder Diffractometry, John Wiley & Sons Inc.: New York, 1996; pp. 89–91.
  • Nelsen, A.S.; Batchelder, D.N.; Pyrz, R. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 2002, 43, 2671–2676.
  • Karacan, I.; Benli, H. An X-ray difraction study for isotactic polypropylene fibers produced with take-up speeds of 2500–4250 m/min. Text. 30d Convect. 2011, 3, 201–209.
  • Wunderlich, B. Macromolecular Physics, Vol. 3, Crystal Melting, Academic Press: New York, 1980.
  • Maani, A.; Blais, B.; Heuzey, M.C.; Carreau, P.J. Rheological and morphological properties of reactively compatibilized thermoplastic olefin (TPO) blends. J. Rheol. 2012, 56, 625–647.
  • Maani, A.; Heuzey, M.C.; Carreau, P.J. Coalesence in thermoplastic olefin (TPO) blends under shear flow. Rheol. Acta 2011, 50, 881–895.
  • Minale, M.; Moldenaers, P.; Mewis, J. Effect of shear history on the morphology of immisible polymer blends. Macromolecules 1997, 30, 5470–5475.
  • Carreau, P.J.; Kee, D.; Chabra, R.P. Rheology of Polymeric Systems: Principles and Applications, Hanser: Munich, 1997.
  • Sepehr, M.; Ausias, G.; Carreau, P.J. Rheological properties of short fiber filled polypropylene in transient shear flow. J. Non-Newtonian Fluid. Mech. 2004, 123, 19–32.
  • Lacroix, C.; Grmela, M.; Carreau, P.J. Relationships between rheology and morphology for immiscible molten blends of polypropylene and ethylene copolymers under shear flow. J. Rheol. 1998, 42, 41–62.
  • Albertsson, A.-C.; Varma, I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003, 4, 1466–1486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.