356
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Bulk Synthesis of Monodisperse and Highly Biocompatible Poly(ɛ-caprolactone)-diol by Transesterification Side-Reactions

, , &

References

  • Iqbal, M.; Valour, J.-P.; Fessi, H.; Elaissari, A. Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid Polym. Sci. 2015, 293, 861–873.
  • Su, S.-K.; Wu, C.-S.; Siao, J.-W.; Yen, F.-S.; Wu, J.-Y.; Huang, C.M. Biodegradable blends prepared from polycaprolactone and poly (glutamic acid): Structure, thermal properties, and biodegradability. Polym. Plast. Technol. Eng. 2010, 49, 1361–1370.
  • Storey, R.F.; Sherman, J.W. Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone. Macromolecules 2002, 35, 1504–1512.
  • Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798.
  • Pitt, C.G.; Chasalow, F.; Hibionada, Y.; Klimas, D.; Schindler, A. Aliphatic polyesters. I. The degradation of poly(ε‐caprolactone) in vivo. J. Appl. Polym. Sci. 1981, 26, 3779–3787.
  • Hutmacher, D.W.; Schantz, T.; Zein, I.; Ng, K.W.; Teoh, S.H.; Tan, K.C. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 2001, 55, 203–216.
  • Williams, D. Revisiting the definition of biocompatibility. Med. Device Technol. 2003, 14, 10–13.
  • Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953.
  • Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256.
  • Zander, N.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe Jr, T.P. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. J. Mater. Sci. Mater. Med. 2013, 24, 179–187.
  • Sarasam, A.; Madihally, S.V. Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 2005, 26, 5500–5508.
  • Sarasam, A.R.; Krishnaswamy, R.K.; Madihally, S.V. Blending chitosan with polycaprolactone: Effects on physicochemical and antibacterial properties. Biomacromolecules 2006, 7, 1131–1138.
  • Semba, T.; Kitagawa, K.; Ishiaku, U.S.; Hamada, H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. Polym. Sci. 2006, 101, 1816–1825.
  • Lim, J.; Chong, M.S.K., Teo, E.Y.; Chen, G.Q.; Chan, J.K.; Teoh, S.H. Biocompatibility studies and characterization of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate)/polycaprolactone blends. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 752–761.
  • Shadi, L.; Karimi, M.; Entezami, A.A. Preparation of electroactive nanofibers of star-shaped polycaprolactone/polyaniline blends. Colloid Polym. Sci. 2015, 293, 481–491.
  • Kumar, S.; Varma, I.K. Degradation studies of thermoplastics composites of jute fiber–reinforced LDPE/polycaprolactone blends. Polym. Plast. Technol. Eng. 2006, 45, 1219–1225.
  • Sayyar, S.; Murray, E.; Thompson, B.C.; Gambhir, S.; Officer, D.L.; Wallace, G.G. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 2013, 52, 296–304.
  • KarbalaeiMahdi, A.; Shahrousvand, M.; Javadi, H. R.; Ghollasi, M.; Norouz, F.; Kamali, M.; Salimi, A. Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers. Mater. Sci. Eng. C. 2017, 78, 1195–1202.
  • Ghavimi, S.A.A.; Ebrahimzadeh, M.H.; Shokrgozar, M.A.; Solati-Hashjin, M.; Osman, N.A.A. Effect of starch content on the biodegradation of polycaprolactone/starch composite for fabricating in situ pore-forming scaffolds. Polym. Test. 2015, 43, 94–102.
  • Won, J.-E.; Mateos-Timoneda, M.A.; Castano, O.; Planell, J.A.; Seo, S.-J.; Lee, E.-J.; Han, C.M.; Kim, H.W. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Biotechnol. Lett. 2015, 37, 935–942.
  • Abdolrasouli, M.H.; Sadeghi, G.M.M.; Nazockdast, H.; Babaei, A. polylactide/polyethylene/organoclay blend nanocomposites: structure, mechanical and thermal properties. Polym. Plast. Technol. Eng. 2014, 53, 1417–1424.
  • Yu, H.; Wang, W.; Chen, X.; Deng, C.; Jing, X. Synthesis and characterization of the biodegradable polycaprolactone‐graft‐chitosan amphiphilic copolymers. Biopolymers 2006, 83, 233–242.
  • Coombes, A.; Rizzi, S.; Williamson, M.; Barralet, J.; Downes, S.; Wallace, W. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 2004, 25, 315–325.
  • Dash, T.K.; Konkimalla, V.B. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release 2012, 158, 15–33.
  • Mishra, G.P.; Tamboli, V.; Mitra, A.K. Effect of hydrophobic and hydrophilic additives on sol–gel transition and release behavior of timolol maleate from polycaprolactone-based hydrogel. Colloid Polym. Sci. 2011, 289, 1553–1562.
  • Díaz, E.; Puerto, I.; Sandonis, I.; Ibañez, I. Morphology and mechanical properties of PLLA and PCL scaffolds. Polym. Plast. Technol. Eng. 2014, 53, 150–155.
  • Zhang, F.; Zhou, T.; Liu, Y.; Leng, J. Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 2015, 5, 11152.
  • Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296, 1673–1676.
  • Shahrousvand, M.; Sadeghi, G.M.M.; Shahrousvand, E.; Ghollasi, M.; Salimi, A. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf. B Biointerfaces, 2017, 156, 292–304.
  • Quadrini, F.; Bellisario, D.; Santo, L.; Gaudio, C.D.; Bianco, A. Shape memory foams of microbial polyester for biomedical applications. Polym. Plast. Technol. Eng. 2013, 52, 599–602.
  • Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504.
  • Deanin, R.D. New useful polymers by ring-opening polymerization. Polym. Plast. Technol. Eng. 1992, 31, 229–239.
  • Wang, L.; Poirier, V.; Ghiotto, F.; Bochmann, M.; Cannon, R.D.; Carpentier, J-F.; Yann, S. Kinetic analysis of the immortal ring-opening polymerization of cyclic esters: A case study with tin (II) catalysts. Macromolecules 2014, 47, 2574–2584.
  • Albertsson, A.-C., Varma, I.K. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003, 4, 1466–1486.
  • Moore, T.G.; Adhikari, R.; Gunatillake, P.A. Biodegradable polyurethane and polyurethane ureas. Google Patents; 2015.
  • Tang, D.; Macosko, C.W.; Hillmyer, M.A. Thermoplastic polyurethane elastomers from bio-based poly (δ-decalactone) diols. Polym. Chem. 2014, 5, 3231–3237.
  • Guan, J.; Sacks, M.S.; Beckman, E.J.; Wagner, W.R. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly (ester‐urethane) ureas based on poly (caprolactone) and putrescine. J. Biomed. Mater. Res. 2002, 61, 493–503.
  • Grad, S.; Kupcsik, L.; Gorna, K.; Gogolewski, S.; Alini, M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials 2003, 24, 5163–5171.
  • Lipik, V.; Widjaja, L.; Liow, S.; Venkatraman, S.; Abadie, M. Synthesis of biodegradable thermoplastic elastomers (BTPE) based on epsilon-caprolactone. Express Polym. Lett. 2010, 4, 32–38.
  • Uhrig, D.; Mays, J.W. Experimental techniques in high‐vacuum anionic polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 6179–6222.
  • Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic polymerization: High vacuum techniques. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3211–3234.
  • Choi, W.Y.; Lee, C.M.; Park, H.J. Development of biodegradable hot-melt adhesive based on poly-ε-caprolactone and soy protein isolate for food packaging system. LWT-Food Sci. Technol. 2006, 39, 591–597.
  • Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004, 273, 381–387.
  • Coleman, M.; Zarian, J. Fourier‐transform infrared studies of polymer blends. II. Poly(ε‐caprolactone)–poly(vinyl chloride) system. J. Polym. Sci. Polym. Phys. Ed. 1979, 17, 837–850.
  • Sang, L.; Wei, Z.; Liu, K.; Wang, X.; Song, K.; Wang, H.; Qi, M. Biodegradable radiopaque iodinated poly(ester urethane) s containing poly(ε‐caprolactone) blocks: Synthesis, characterization, and biocompatibility. J. Biomed. Mater. Res. Part A 2014, 102, 1121–1130.
  • Shin, E.J.; Jeong, W.; Brown, H.A.; Koo, B.J.; Hedrick, J.L.; Waymouth, R.M. Crystallization of cyclic polymers: Synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules 2011, 44, 2773–2779.
  • Tuba, F.; Oláh, L.; Nagy, P. Towards the understanding of the molecular weight dependence of essential work of fracture in semi-crystalline polymers: A study on poly(ε-caprolactone). Express Polym. Lett. 2014, 8, 869–879.
  • Del Valle, L.; Díaz, A.; Royo, M.; Rodríguez-Galán, A.; Puiggalí, J. Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility. Express Polym. Lett. 2012, 6, 266–282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.