571
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Water Uptake Kinetics and Control Release of Agrochemical Fertilizers from Nanoclay-Assisted Semi-interpenetrating Sodium Acrylate-Based Hydrogel

&

References

  • Bajpai, A.; Giri, A. Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React. Funct. Polym. 2002, 53 (2), 125–141.
  • Guo, M.; Liu, M.; Hu, Z.; Zhan, F.; Wu, L. Preparation and properties of a slow release NP compound fertilizer with superabsorbent and moisture preservation. J. Appl. Polym. Sci. 2005, 96 (6), 2132–2138.
  • Laftah, W.A.; Hashim, S.; Ibrahim, A.N. Polymer hydrogels: A review. Polym. Plast. Technol. Eng. 2011, 50 (14), 1475–1486.
  • Bain, M.K.; Maity, D.; Bhowmick, B.; Mondal, D.; Mollick, M.M.R.; Sarkar, G.; Bhowmik, M.; Rana, D.; Chattopadhyay, D. Effect of PEG–salt mixture on the gelation temperature and morphology of MC gel for sustained delivery of drug. Carbohydr. Polym. 2013, 91 (2), 529–536.
  • Bain, M.K.; Bhowmick, B.; Maity, D.; Mondal, D.; Mollick, M.M.R.; Paul, B.K.; Bhowmik, M.; Rana, D.; Chattopadhyay, D. Effect of PVA on the gel temperature of MC and release kinetics of KT from MC based ophthalmic formulations. Int. J. Biol. Macromol. 2012, 50 (3), 565–572.
  • Giannelis, E.P. Polymer layered silicate nanocomposites. Adv. Mater. 1996, 8 (1), 29–35.
  • Saha, N.R.; Sarkar, G.; Roy, I.; Rana, D.; Bhattacharyya, A.; Adhikari, A.; Mukhopadhyay, A.; Chattopadhyay, D. Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr. Polym. 2016, 136, 1218–1227.
  • Kazanskii, K.; Dubrovskii, S. Chemistry and Physics of “Agricultural” Hydrogels, in Polyelectrolytes Hydrogels Chromatographic Materials, Springer: Berlin, 1992; pp. 97–133.
  • Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. Insight into hydrogels. Design. Monom. Polym. 2016, 19 (5), 1–23.
  • Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A. Synthesis of a slow‐release and superabsorbent nitrogen fertilizer and its properties. Polym. Adv. Technol. 2006, 17 (6), 430–438.
  • Saraydın, D.; Karadağ, E.; Güven, O. Relationship between the swelling process and the releases of water soluble agrochemicals from radiation crosslinked acrylamide/itaconic acid copolymers. Polym. Bull. 2000, 45 (3), 287–294.
  • Bain, M.K.; Bhowmik, M.; Maity, D.; Bera, N. K.; Ghosh, S.; Chattopadhyay, D. Control of thermo reversible gelation of methylcellulose using polyethylene glycol and sodium chloride for sustained delivery of ophthalmic drug. J. Appl. Polym. Sci. 2010, 118 (2), 631–637.
  • El-Mohdy, H.A. Water sorption behavior of CMC/PAM hydrogels prepared by γ-irradiation and release of potassium nitrate as agrochemical. React. Funct. Polym. 2007, 67 (10), 1094–1102.
  • Abd El‐Rehim, H.; Hegazy, E.S.A.; Abd El‐Mohdy, H. Effect of various environmental conditions on the swelling property of PAAm/PAAcK superabsorbent hydrogel prepared by ionizing radiation. J. Appl. Polym. Sci. 2006, 101 (6), 3955–3962.
  • Mondal, D.; Bhowmick, B.; Mollick, M.M.R.; Maity, D.; Mukhopadhyay, A.; Rana, D.; Chattopadhyay, D. Effect of clay concentration on morphology and properties of hydroxypropylmethylcellulose films. Carbohydr. Polym. 2013, 96 (1), 57–63.
  • Bhunia, T.; Bhowmik, M.; Chattopadhyay, D.; Bandyopadhyay, A. Interesting correlation between structure, physicomechanical, swelling and sustained transdermal release behavior of diltiazem hydrochloride in various poly (vinyl alcohol) hydrogel membranes. J. Appl. Polym. Sci. 2012, 124 (S1), E177–E189.
  • Hanrahan, G.; Lu, K. Application of factorial and response surface methodology in modern experimental design and optimization. Crit. Rev. Anal. Chem. 2006, 36 (3–4), 141–151.
  • Ganguly, S.; Das, N.C. Synthesis of a novel pH responsive phyllosilicate loaded polymeric hydrogel based on poly (acrylic acid-co-N-vinylpyrrolidone) and polyethylene glycol for drug delivery: Modelling and kinetics study for the sustained release of an antibiotic drug. RSC Adv. 2015, 5 (24), 18312–18327.
  • Wang, W.; Wang, A. Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohydr. Polym. 2010, 80 (4), 1028–1036.
  • Flory, P.J.; Rehner, Jr, J. Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 1943, 11 (11), 512–520.
  • Peppas, N.A.; Merrill, E.W. Poly (vinyl alcohol) hydrogels: Reinforcement of radiation‐crosslinked networks by crystallization. J. Polym. Sci. Polym. Chem. Ed. 1976, 14 (2), 441–457.
  • Bray, J.C.; Merrill, E.W. Poly (vinyl alcohol) hydrogels. Formation by electron beam irradiation of aqueous solutions and subsequent crystallization. J. Appl. Polym. Sci. 1973, 17 (12), 3779–3794.
  • Xue, W.; Champ, S.; Huglin, M.B. Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer 2001, 42 (8), 3665–3669.
  • Rubinstein, M.; Colby, R.H. Polymer Physics, OUP: Oxford, 2003.
  • Bajpai, A.; Giri, A. Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr. Polym. 2003, 53 (3), 271–279.
  • Horkay, F.; Tasaki, I.; Basser, P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2000, 1 (1), 84–90.
  • Horkay, F.; Tasaki, I.; Basser, P.J. Effect of monovalent-divalent cation exchange on the swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2001, 2 (1), 195–199.
  • Oyama, H.T.; Tang, W.T.; Frank, C.W. Complex formation between poly (acrylic acid) and pyrene-labeled polyethylene glycol in aqueous solution. Macromolecules 1987, 20 (3), 474–480.
  • Lee, J.H.; Bucknall, D.G. Swelling behavior and network structure of hydrogels synthesized using controlled UV‐initiated free radical polymerization. J. Polym. Sci. B Polym. Phys. 2008, 46 (14), 1450–1462.
  • Mall, I.; Srivastava, V.C.; Kumar, G.V.A.; Mishra, I.M. Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Coll. Surf. A Physicochem. Eng. Aspects 2006, 278 (1), 175–187.
  • Tomar, R.S.; Gupta, I.; Singhal, R.; Nagpal, A.K. Synthesis of poly (acrylamide-co-acrylic acid)-based super-absorbent hydrogels by gamma radiation: Study of swelling behaviour and network parameters. Design. Monom. Polym. 2007, 10(1), 49–66.
  • Odian, G. Radical Chain Polymerization. Principles of Polymerization, 4th ed., John Wiley & Sons: New York, 2004; pp. 198–349.
  • Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting, John Wiley & Sons: New York, 2015.
  • Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of clays as drug delivery systems: Possibilities and limitations. Appl. Clay Sci. 2007, 36 (1), 22–36.
  • Damm, C.; Mallembakam, M.R.; Voronov, A.; Peukert, W. Production of filled hydrogels by mechanochemically induced polymerization. J. Appl. Polym. Sci. 2011, 120 (2), 799–807.
  • Henderson, K.J.; Zhou, T.C.; Otim, K.J.; Shull, K.R. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 2010, 43 (14), 6193–6201.
  • Buchholz, F.L.; Graham, A.T. Modern Superabsorbent Polymer Technology. John Wiley & Sons: New York, NY, 1998; p. 279.
  • Xu, K.; Wang, J.; Xiang, S.; Chen, Q.; Zhang, W.; Wang, P. Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite. Appl. Clay Sci. 2007, 38 (1), 139–145.
  • Tang, Q.; Wu, J.; Sun, H.; Fan, S.; Hu, D.; Lin, J. Synthesis of polyacrylate/poly (ethylene glycol) hydrogel and its absorption properties for heavy metal ions and dye. Polym. Compos. 2009, 30 (8), 1183–1189.
  • Wolf, S.; Alam, N.; Feldmann, C. δ‐Potassium nitrate (KNO3): Synthesis and structure of a new modification of potassium nitrate. Zeitschrift für anorganische und allgemeine Chemie 2015, 641 (2), 383–387.
  • Khanlari, S.; Dubé, M.A. In situ poly (sodium acrylate)‐based nanocomposite formation by redox‐initiated solution polymerization. Polym. Eng. Sci. 2015, 55 (6), 1230–1236.
  • Shanmukaraj, D.; Murugan, R. Characterization of PEG: LiClO4 + SrBi4Ti4O15 nanocomposite polymer electrolytes for lithium secondary batteries. J. Power Sources 2005, 149, 90–95.
  • Hussein, M.A.; Abu‐Zied, B.M.; Asiri, A.M. Preparation, characterization, and electrical properties of ZSM‐5/PEG composite particles. Polym. Compos. 2014, 35 (6), 1160–1168.
  • Zhu, J.H.; Wang, Y.; Chun, Y.; Wang, X.S. Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY. J. Chem. Soc. Faraday Trans. 1998, 94 (8), 1163–1169.
  • Wang, S.-G.; Sun, X.F.; Liu, X.W.; Gong, W.X.; Gao, B.Y.; Bao, N. Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chem. Eng. J. 2008, 142 (3), 239–247.
  • Kim, S.-G.; Lim, G.T.; Jegal, J.; Lee, K.H. Pervaporation separation of MTBE (methyl tert-butyl ether) and methanol mixtures through polyion complex composite membranes consisting of sodium alginate/chitosan. J. Membr. Sci. 2000, 174 (1), 1–15.
  • Sheng, S.R.; Wang, X.Y.; Xu, H.Z.; Zhu, G.Q.; Zhou, Y.F. Anatomy of large animal spines and its comparison to the human spine: A systematic review. Eur. Spine. J. 2010, 19 (1), 46–56.
  • Ho, Y.-S.; McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety Environ. Protect. 1998, 76 (2), 183–191.
  • Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Controll. Release 1987, 5(1), 23–36.
  • Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controll. Release 1987, 5 (1), 37–42.
  • Tomić, S.L.; Mićić, M.M.; Filipović, J.M.; Suljovrujić, E.H. Swelling and drug release behavior of poly (2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat. Phys. Chem. 2007, 76 (5), 801–810.
  • Bekkour, K.; Sun-Waterhouse, D.; Wadhwa, S.S. Rheological properties and cloud point of aqueous carboxymethyl cellulose dispersions as modified by high or low methoxyl pectin. Food Res. Int. 2014, 66, 247–256.
  • Donbrow, M.; Samuelov, Y. Zero order drug delivery from double-layered porous films: release rate profiles from ethyl cellulose, hydroxypropyl cellulose and polyethylene glycol mixtures. J. Pharm. Pharmacol. 1980, 32 (1), 463–470.
  • Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharmaceut. Sci. 1963, 52 (12), 1145–1149.
  • Bhowmik, M.; Kumari, P.; Sarkar, G.; Bain, M.K.; Bhowmick, B.; Mollick, M.M.R.; Mondal, D.; Maity, D.; Rana, D.; Bhattacharjee, D.; Chattopadhyay, D. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int. J. Biol. Macromol. 2013, 62, 117–123.
  • Bhowmik, M.; Bain, M.K.; Ghosh, L.K.; Chattopadhyay, D. Effect of salts on gelation and drug release profiles of methylcellulose-based ophthalmic thermo-reversible in situ gels. Pharm. Dev. Technol. 2011, 16 (4), 385–391.
  • Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharmaceut. 1983, 15 (1), 25–35.
  • Hixson, A.; Crowell, J. Dependence of reaction velocity upon surface and agitation. Indus. Eng. Chem. 1931, 23 (10), 1160–1168.
  • Shaviv, A.; Raban, S.; Zaidel, E. Modeling controlled nutrient release from polymer coated fertilizers: Diffusion release from single granules. Environ. Sci. Technol. 2003, 37 (10), 2251–2256.
  • Siepmann, J.; Peppas, N. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174.
  • Lanaro, G.; Patey, G.N. Molecular dynamics simulation of NaCl dissolution. J. Phys. Chem. B 2015, 119 (11), 4275–4283.
  • Pascoal, A.; da Silva, P.; Pinheiro, M.C. Drug dissolution profiles from polymeric matrices: Data versus numerical solution of the diffusion problem and kinetic models. Int. Commun. Heat Mass Transfer 2015, 61, 118–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.