409
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Functional Polymeric Membrane Containing Inorganic Nanoparticle: Recent Advances and Applications

, &

References

  • Muntha, S.T.; Kausar, A.; Siddiq, M. Progress on polymer-based membranes in gas separation technology. Polym. Plast. Technol. Eng. 2016, 55, 1282–1298. doi:10.1080/03602559.2016.1163592.
  • Muntha, S.T.; Kausar, A.; Siddiq, M. A review on zeolite reinforced polymeric membranes: Salient features and applications. Polym. Plast. Technol. Eng. 2016, 55, 1971–1987. doi:10.1080/03602559.2016.1185631.
  • Lau, C.H.; Li, P.; Li, F.; Chung, T.S.; Paul, D.R. Reverse-selective polymeric membranes for gas separations. Prog. Polym. Sci. 2013, 38, 740–766.
  • Begum, S.; Kausar, A.; Ullah, H.; Siddiq, M. Potential of polyvinylidene flouride/carbon nanotube composite in energy, electronics and membrane technology: An overview. Polym. Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1185630.
  • Torok, Z.; Crul, T.; Maresca, B.; Schutz, G.J.; Viana, F.; Dindia, L.; Porta, A. Plasma membranes as heat stress sensors: From lipid-controlled molecular switches to therapeutic applications. Biochim. Biophys. Acta 2014, 1838, 1594–1618.
  • Stamatialis, D.F.; Papenburg, B.J.; Girones, M.; Saiful, S.; Bettahalli, S.N.; Schmitmeier, S.; Wessling, M. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. J. Membr. Sci. 2008, 308, 1–34.
  • Hacarlioglu, P.; Toppare, L.; Yilmaz, L. Polycarbonate–polypyrrole mixed matrix gas separation membranes. J. Membr. Sci. 2003, 225, 51–62.
  • Chung, T.S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507.
  • Yong, H.H.; Park, H.C.; Kang, Y.S.; Won, J.; Kim, W.N. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. J. Membr. Sci. 2001, 188, 151–163.
  • Goh, P.S.; Ismail, A.F.; Sanip, S.M.; Ng, B.C.; Aziz, M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011, 81, 243–264.
  • Gur, T.M. Permselectivity of zeolite filled polysulfone gas separation membranes. J. Membr. Sci. 1994, 93, 283–289.
  • Khan, A.L.; Cano-Odena, A.; Gutiérrez, B.; Minguillón, C.; Vankelecom, I.F. Hydrogen separation and purification using polysulfone acrylate–zeolite mixed matrix membranes. J. Membr. Sci. 2010, 350, 340–346.
  • Leo, C.P.; Kamil, N.A.; Junaidi, M.U.M.; Kamal, S.N.M.; Ahmad, A.L. The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane. Sep. Purif. Technol. 2013, 103, 84–91.
  • Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric amorphous solid dispersions: A review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci. 2016, 105, 2527–2544. doi:10.1016/j.xphs.2015.10.008
  • Panthi, G.; Park, M.; Kim, H.Y.; Park, S.J. Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: A review. J. Ind. Eng. Chem. 2015, 24, 1–13.
  • Müller, L.K.; Landfester, K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochim. Biophys. Res. Commun. 2015, 468, 411–418.
  • Shaalan, M.; Saleh, M.; El-Mahdy, M.; El-Matbouli, M. Recent progress in applications of nanoparticles in fish medicine: A review. Nanomed. Nanotechnol. Biol. Med. 2015, 12, 701–710.
  • Hosseini, S.S.; Bringas, E.; Tan, N.R.; Ortiz, I.; Ghahramani, M.; Shahmirzadi, M.A.A. Recent progress in development of high performance polymeric membranes and materials for metal plating wastewater treatment: A review. J. Water Process Eng. 2016, 9, 78–110.
  • Wang, B.; Jackson, E.A.; Hoff, J.W.; Dutta, P.K. Fabrication of zeolite/polymer composite membranes in a roller assembly. Micropor. Mesopor. Mater. 2016, 223, 247–253.
  • Chang, B.P.; Akil, H.M.; Nasir, R.M. Mechanical and tribological properties of zeolite-reinforced UHMWPE composite for implant application. Procedia Eng. 2013, 68, 88–94.
  • Conde, J.; Ambrosone, A.; Hernandez, Y.; Tian, F.; McCully, M.; Berry, C.C.; Jesus, M. 15 Years on siRNA delivery: Beyond the state-of-the-art on inorganic nanoparticles for RNAi therapeutics. Nano Today 2015, 10, 421–450.
  • Dreier, T.; Schulz, C. Laser-based diagnostics in the gas-phase synthesis of inorganic nanoparticles. Powder Technol. 2016, 287, 226–238.
  • Ladj, R.; Bitar, A.; Eissa, M.M.; Fessi, H.; Mugnier, Y.; Le Dantec, R.; Elaissari, A. Polymer encapsulation of inorganic nanoparticles for biomedical applications. Int. J. Pharma. 2013, 458, 230–241.
  • Lokhande, A.C.; Gurav, K.V.; Jo, E.; Lokhande, C.D.; Kim, J.H. Chemical synthesis of Cu2SnS3(CTS) nanoparticles: A status review. J. Alloy. Compd. 2016, 656, 295–310.
  • Giner-Casares, J.J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2015, 19, 19–28. doi:10.1016/j.mattod.2015.07.004.
  • Labouta, H.I.; Schneider, M. Interaction of inorganic nanoparticles with the skin barrier: Current status and critical review. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 39–54.
  • Oh, N.W.; Jegal, J.; Lee, K.H. Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes. J. Appl. Polym. Sci. 2001, 80, 2729–2736.
  • Zarschler, K.; Rocks, L.; Licciardello, N.; Boselli, L.; Polo, E.; Garcia, K.P.; Cola, L.D.; Stephan, H.; Dawson, K.A. Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for 2 biomedical applications. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1663–1701. doi:10.1016/j.nano.2016.02.019.
  • Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2015. doi:10.1016/j.arabic.2015.11.002.
  • Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28.
  • Carbonaro, C.M.; Orru, F.; Ricci, P.C.; Ardu, A.; Corpino, R.; Chiriu, D.; Angius, F.; Mura, A.; Cannas, C. High efficient fluorescent stable colloidal sealed dye-doped mesostructured silica nanoparticles. Micropor. Mesopor. Mater. 2016, 225, 432–439.
  • Salama, I.E.; Paul, A. Emulsions of fluorinated oils stabilised by fluorinated silica nanoparticles. Colloid. Surf. A Physicochem. Eng. Aspects 2016, 494, 125–138.
  • Iqbal, Y.; Bae, H.; Rhee, I.; Hong, S. Magnetic heating of silica-coated manganese ferrite nanoparticles. J. Magn. Magn. Mater. 2016, 409, 80–86.
  • Gerrans, K.; Luhrs, A.; Feider, C.; Margerum, D. Silica nanoparticles functionalized with polyamidoamine (PAMAM) dendrimers as platforms for photoluminescence (PL) sensing of copper and cyanide ions. J. Colloid Interf. Sci. 2016, 470, 276–283.
  • Duan, J.; Yu, Y.; Li, Y.; Wang, Y.; Sun, Z. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos. Chemosphere 2016, 151, 152–162.
  • Akbari, A.; Yegani, R.; Pourabbas, B.; Behboudi, A. Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of humic acid. Chem. Eng. Res. Des. 2016, 109, 282–296.
  • Li, J.; Du, X.; Zheng, N.; Xu, L.; Xu, J.; Li, S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloid. Surf. B Biointerf. 2016, 141, 374–381.
  • Lee, G.H.; Lee, S.J.; Jeong, S.W.; Kim, H.; Park, G.Y.; Lee, S.G.; Choi, J.H. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles. Colloid. Surf. B Biointerf. 2016, 143, 511–517.
  • Moreno, Y.P.; Cardoso, M.P.; Ferrao, M.F.; Moncada, E.A.; dos Santos, J.H.Z. Effect of SiCl4 on the preparation of functionalized mixed-structure silica from monodisperse sol-gel silica nanoparticles. Chem. Eng. J. 2016, 292, 233–245.
  • Lv, X.; Zhang, L.; Xing, F.; Lin, H. Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation. Micropor. Mesopor. Mater. 2016, 225, 238–244.
  • Naffakh, M.; Diez-Pascual, A.M.; Marco, C.; Ellis, G.J.; Gomez-Fatou, M.A. Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Prog. Polym. Sci. 2013, 38, 1163–1231.
  • Majidnia, Z.; Idris, A. Photocatalytic reduction of iodine in radioactive waste water using maghemite and titania nanoparticles in PVA-alginate beads. J. Taiwan Inst. Chem. Eng. 2015, 54, 137–144.
  • Rai, S.K.; Mukherjee, A.K. Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-keratinase. Biocatal. Agric. Biotechnol. 2015, 4, 632–644.
  • Sethi, K.; Roy, I. Organically modified titania nanoparticles for sustained drug release applications. J. Colloid Interf. Sci. 2015, 456, 59–65.
  • Kinoshita, M.; Sugamura, T.; Shimoyama, Y. Effect of solvent species inside wet gel on fabrication of titania nanoparticle by supercritical carbon dioxide drying. J. Supercrit. Fluids 2016, 110, 90–96.
  • Husnain, A.; Qazi, I.A.; Khaliq, W.; Arshad, M. Immobilization in cement mortar of chromium removed from water using titania nanoparticles. J. Environ. Manage. 2016, 172, 10–17.
  • Tantis, I.; Dozzi, M.V.; Bettini, L.G.; Chiarello, G.L.; Dracopolous, V.; Selli, E.; Lianos, P. Highly functional titania nanoparticles produced by flame spray pyrolysis. Photoelectrochemical and solar cell applications. Appl. Catal. B Environ. 2016, 182, 369–371.
  • Carevic, M.; Abazovic, N.D.; Savic, T.; Novakovic, T.B.; Mojovic, M.D.; Comor, M.I. Structural, optical and photodegradation properties of pure and Fe-doped titania nanoparticles probed using simulated solar light. Ceram. Int. 2016, 42, 1521–1529.
  • Delavari, S.; Amin, N.A.S. Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study. Appl. Energy 2016, 162, 1171–1185.
  • Majidnia, Z.; Idris, A.; Majid, M.; Zin, R.; Ponraj, M. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads. Appl. Radiat. Isot. 2015, 105, 105–113.
  • Kamonsatikul, C.; Khamnaen, T.; Phiriyawirut, P.; Charoenchaidet, S.; Somsook, E. Synergistic activities of magnetic iron-oxide nanoparticles and stabilizing ligands containing ferrocene moieties in selective oxidation of benzyl alcohol. Catal. Commun. 2012, 26, 1–5.
  • Hasanzadeh, M.; Shadjou, N.; Guardia, M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical bio sensing. Trend. Anal. Chem. 2015, 72, 1–9.
  • Makovec, D.; Gyergyek, S.; Primc, D.; Plantan, I. The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution. Mater. Chem. Phys. 2015, 153, 376–383.
  • Augustin, E.; Czubek, B.; Nowicka, A.M.; Kowalczyk, A.; Stojek, Z.; Mazerska, Z. Improved cytotoxicity and preserved level of cell death induced in colon cancer cells by doxorubicin after its conjugation with iron-oxide magnetic nanoparticles. Toxicol. Vitro 2016, 33, 45–53.
  • Bhuyan, B.; Paul, B.; Purkayastha, D.D.; Dhar, S.S.; Behera, S. Facile synthesis and characterization of zinc oxide nanoparticles and studies of their catalytic activity towards ultrasound-assisted degradation of metronidazole. Mater. Lett. 2016, 168, 158–162.
  • Mohammadi, M.; Haghtalab, A.; Fakhroueian, Z. Experimental study and thermodynamic modeling of CO2 gas hydrate formation in presence of zinc oxide nanoparticles. J. Chem. Thermodyn. 2016, 96, 24–33.
  • Connolly, M.; Fernandez, M.; Conde, E.; Torrent, F.; Navas, J.M.; Fernandez-Cruz, M.L. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci. Total Environ. 2016, 551, 334–343.
  • Hasanpoor, M.; Aliofkhazraei, M.; Delavari, H.H. In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles. Ceram. Int. 2016, 42, 6906–6913.
  • Xiao, L.; Liu, C.; Chen, X.; Yang, Z. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem. Toxicol. 2016, 90, 76–83.
  • Taranath, T.C.; Patil, B.N. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis. Int. J. Mycobacteriol. 2016, 5, 197–204. doi:10.1016/j.ijmyco.2016.03.004.
  • Sawada, H.; Oikawa, Y.; Matsuki, Y.; Saito, T. UV resistance of encapsulated low molecular weight aromatic compounds in fluoroalkyl end-capped trimethoxyvinylsilane oligomer/silica nanocomposites. Polym. Adv. Technol. 2014, 25, 388–395.
  • Sun, D.; Hussain, H.L.; Yi, Z.; Rookes, J.E.; Kong, L.; Cahill, D.M. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 2016, 152, 81–91.
  • Li, Q.; Pan, S.; Li, X.; Liu, C.; Li, J.; Sun, X.; Wang, L. Hollow mesoporous silica spheres/polyethersulfone composite ultrafiltration membrane with enhanced antifouling property. Colloid. Surf. A Physicochem. Eng. Aspect, 2015, 487, 180–189.
  • Wang, T.P.; Kang, D.Y. Highly selective mixed-matrix membranes with layered fillers for molecular separation. J. Membr. Sci. 2016, 497, 394–401.
  • Anjum, M.W.; de Clippel, F.; Didden, J.; Khan, A.L.; Couck, S.; Baron, G.V.; Vankelecom, I.F.J. Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. J. Membr. Sci. 2015, 495, 121–129.
  • Zhao, Y.; Yang, H.; Wu, H.; Jiang, Z. Enhanced proton conductivity of hybrid membranes by incorporating phosphorylated hollow mesoporous silica submicrospheres. J. Membr. Sci. 2014, 469, 418–427.
  • Yamamoto, Y.; Fujii, S.; Shitajima, K.; Fujiwara, K.; Hikasa, S.; Nakamura, Y. Soft polymer-silica nanocomposite particles as filler for pressure-sensitive adhesives. Polymer 2015, 70, 77–87.
  • Eshaghi, Z.; Esmaeili-Shahri, E. Sol-gel-derived magnetic SiO2/TiO2 nanocomposite reinforced hollow fiber-solid phase microextraction for enrichment of non-steroidal anti-inflammatory drugs from human hair prior to high performance liquid chromatography. J. Chromatogr. B 2014, 973, 142–151.
  • Wu, H.; Cao, Y.; Li, Z.; He, G.; Jiang, Z. Novel sulfonated poly(ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells. J. Power Sources 2015, 273, 544–553.
  • Yin, Y.; Xu, T.; Shen, X.; Wu, H.; Jiang, Z. Fabrication of chitosan/zwitterion functionalized titania–silica hybrid membranes with improved proton conductivity. J. Membr. Sci. 2014, 469, 355–363.
  • Liu, W.; Li, B.; Cao, R.; Jiang, Z.; Yu, S.; Liu, G.; Wu, H. Enhanced pervaporation performance of poly (dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. J. Membr. Sci. 2011, 378 (1), 382–392.
  • Caldeira, L.; Vasconcelos, D.C.; Nunes, E.H.; Costa, V.C.; Musse, A.P.; Hatimondi, S.A.; Vasconcelos, W.L. Processing and characterization of sol-gel titania membranes. Ceram. Int. 2012, 38 (4), 3251–3260.
  • Li, D.; Wang, H.; Jing, W.; Fan, Y.; Xing, W. Fabrication of mesoporous TiO2 membranes by a nanoparticle-modified polymeric sol process. J. Colloid Interf. Sci. 2014, 433, 43–48.
  • de Bonis, C.; Cozzi, D.; Mecheri, B.; D’Epifanio, A.; Rainer, A.; De Porcellinis, D.; Licoccia, S. Effect of filler surface functionalization on the performance of Nafion/titanium oxide composite membranes. Electrochim. Acta 2014, 147, 418–425.
  • Li, T.; Pan, Y.; Peinemann, K.V.; Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 2013, 425, 235–242.
  • Silva, A.H.; Lima, E.; Mansilla, M.V.; Zysler, R.D.; Troiani, H.; Pisciotti, M.L.M.; Winter, E. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: Cell uptake and biocompatibility evaluation. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 909–919.
  • Ghazani, A.A.; Pectasides, M.; Sharma, A.; Castro, C.M.; Mino-Kenudson, M.; Lee, H.; Weissleder, R. Molecular characterization of scant lung tumor cells using iron-oxide nanoparticles and micro-nuclear magnetic resonance. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 661–668.
  • Kriedemann, B.; Fester, V. Critical process parameters and their interactions on the continuous hydrothermal synthesis of ironoxide nanoparticles. Chem. Eng. J. 2015, 281, 312–321.
  • Peterson, R.D.; Chen, W.; Cunningham, B.T.; Andrade, J.E. Enhanced sandwich immunoassay using antibody-functionalized magnetic iron-oxide nanoparticles for extraction and detection of soluble transferrin receptor on a photonic crystal biosensor. Biosens. Bioelectron. 2015, 74, 815–822.
  • Peterson, R.D.; Cunningham, B.T.; Andrade, J.E. A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosens. Bioelectron. 2014, 56, 320–327.
  • Ariza, M.J.; Benavente, J.; Rodriguez-Castellon, E.; Palacio, L. Effect of hydration of polyamide membranes on the surface electrokinetic parameters: Surface characterization by X-ray photoelectronic spectroscopy and atomic force microscopy. J. Colloid Interf. Sci. 2002, 247, 149–158.
  • Sridhar, S.; Smitha, B.; Mayor, S.; Prathab, B.; Aminabhavi, T.M. Gas permeation properties of polyamide membrane prepared by interfacial polymerization. J. Matter. Sci. 2007, 42, 9392–9401.
  • Iqbal, M.; Man, Z.; Mukhtar, H.; Dutta, B.K. Solvent effect on morphology and CO2/CH4 separation performance of asymmetric polycarbonate membranes. J. Membr. Sci. 2008, 318 (1), 167–175.
  • Wu, X.M.; Zhang, Q.G.; Lin, P.J.; Qu, Y.; Zhu, A.M.; Liu, Q.L. Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol. J. Membr. Sci. 2015, 493, 147–155.
  • Ahmad, A.; Waheed, S.; Khan, S.M.; Shafiq, M.; Farooq, M.; Sanaullah, K.; Jamil, T. Effect of silica on the properties of cellulose acetate/polyethylene glycol membranes for reverse osmosis. Desalination 2015, 355, 1–10.
  • Tong, H.; Hu, C.; Yang, S.; Ma, Y.; Guo, H.; Fan, L. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer 2015, 69, 138–147.
  • Scholes, C.A.; Smith, K.H.; Kentish, S.E.; Stevens, G.W. CO2 capture from pre-combustion processes-strategies for membrane gas separation. Int. J. Greenhouse Gas Control 2010, 4, 739–755.
  • Pinnau, I.; Koros, W.J. Influence of quench medium on the structures and gas permeation properties of polysulfone membranes made by wet and dry/wet phase inversion. J. Membr. Sci. 1992, 71, 81–96.
  • Tian, M.; Wang, Y.; Wang, R.; Fane, A.G. Synthesis and characterization of thin film forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination 2016, 401, 142–150. doi:10.1016/j.desal.2016.04.003
  • Torabi, B.; Ameri, E. Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem. Eng. J. 2016, 288, 461–472.
  • Zhuang, G.; Wey, M.; Tseng, H. The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment. Chem. Eng. Res. Des. 2015, 104, 319–332.
  • Zhang, Y.; Wang, R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas–liquid membrane contactor. J. Membr. Sci. 2014, 452, 379–389.
  • Baglio, V.; Arico, A.S.; Di Blasi, A.; Antonucci, V.; Antonucci, P.L.; Licoccia, S.; Fiory, F.S. Nafion–TiO2 composite DMFC membranes: Physico-chemical properties of the filler versus electrochemical performance. Electrochim. Acta 2005, 50, 1241–1246.
  • Filice, S.; D’Angelo, D.; Libertino, S.; Nicotera, I.; Kosma, V.; Privitera, V.; Scalese, S. Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water. Carbon 2015, 82, 489–499.
  • Khaled, S.M.Z.; Miron, R.J.; Hamilton, D.W.; Charpentier, P.A.; Rizkalla, A.S. Reinforcement of resin based cement with titania nanotubes. Dental Mater. 2010, 26, 169–178.
  • Xin, Q.; Gao, Y.; Wu, X.; Li, C.; Liu, T.; Shi, Y.; Li, Y.; Jiang, Z.; Wu, H.; Cao, X. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane construct CO2-facilitated transport pathways for enhanced CO2 separation. J. Membr. Sci. 2015, 488, 13–29.
  • Marra, A.; Silvestre, C.; Duraccio, D.; Cimmino, S. Polylactic acid/zinc oxide biocomposite films for food packaging application. Int. J. Biol. Macromol. 2016, 88, 254–262.
  • Machovsky, M.; Kuritka, L.; Bazant, P.; Vesela, D.; Saha, P. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites. Mater. Sci. Eng. R 2014, 41, 70–77.
  • Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater. Sci. Eng. R 2016, 58, 242–253.
  • Ali, M.; Zafar, M.; Jamil, T. Butt, M.T.Z. Influence of glycol additives on the structure and performance of cellulose acetate/zinc oxide blend membranes. Desalination 2011, 270, 98–104.
  • Choi, W.; Ingole, P.G.; Park, J.S.; Lee, D.W.; Kim, J.H.; Lee, H.K. H2/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method. Chem. Eng. Res. Des. 2015, 102, 297–306.
  • Li, X.; Jiang, Z.; Wu, Y.; Zhang, H.; Cheng, Y.; Guo, R.; Wu, H. High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. J. Membr. Sci. 2015, 495, 72–80.
  • Momeni, S.M.; Pakizeh, M. Preparation, characterization and gas permeation study of PSf/MgO nanocomposite membrane. Brazil. J. Chem. Eng. 2013, 30, 589–597.
  • Kolekar, T.V.; Thorat, N.D.; Yadav, H.M.; Magalad, V.T.; Shinde, M.A.; Bangdar, S.S.; Kim, J.H.; Agawane, G.L. Nanocrystalline hydroxyapatite doped with aluminium: A potential carrier for biomedical applications. Ceram. Int. 2016, 42, 5304–5311.
  • Liao, N.; Joshi, M.K.; Tiiwari, A.P.; Park, C.-H.; Kim, C.S. Fabrication, characterization and biomedical application of two-nozzle electrospun polycaprolactone/zein-calcium lactate composite nonwoven mat. J. Mech. Behav. Biomed. Mater. 2016, 60, 312–323.
  • Liu, H.; Gong, C.; Wang, J.; Liu, X.; Liu, H.; Cheng, F.; Wang, G.; Zheng, G.; Qin, C.; Wen, S. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr. Polym. 2016, 136, 1379–1385.
  • Kim, D.J.; Choi, D.H.; Park, C.H.; Nam, S.Y. Characterization of the sulfonated PEEK/sulfonated nanoparticles composite membrane for the fuel cell application. Int. J. Hydrogen Energy 2016, 41, 5793–5802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.