530
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Research Advancement Towards Polymer/Nanodiamond Composite in Buckypaper: A Review

, &

References

  • Nasir, A.; Kausar, A.; Younus, A. Polymer/graphite nanocomposites: Physical features, fabrication and current relevance. Polym. Plast. Technol. Eng. 2015, 54, 750–770.
  • Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green. Chem. 2010, 12, 743–754.
  • Nasir, A.; Kausar, A.; Younus, A. Novel hybrids of polystyrene nanoparticles and silica nanoparticles-grafted-graphite via modified technique. Polym. Plast. Technol. Eng. 2015, 54, 1122–1134.
  • Anwar, Z.; Kausar, A.; Muhammad, B. Polymer and graphite-derived nanofiller composite: An overview of functional applications. Polym. Plast. Technol. Eng. 2016, doi:10.1080/03602559.2016.1163598.
  • Danilenko, V.V. Synthesis and Sintering of Diamond by Explosion, Vol. 272. Énergoatomizdat: Moscow.
  • Rafique, I.; Kausar, A.; Muhammad, B. Epoxy resin composite reinforced with carbon fiber and inorganic filler: Overview on preparation and properties. Polym. Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1163597.
  • Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Terrones, M.; Dresselhaus, M.S. Nanotechnology: ‘Buckypaper’ from coaxial nanotubes. Nature 2005, 433, 476–476.
  • Kim, Y.A.; Muramatsu, H.; Hayashi, T.; Endo, M.; Terrones, M.; Dresselhaus, M.S. Fabrication of high‐purity, double‐walled carbon nanotube buckypaper. Chem. Vapor. Deposit. 2006, 12, 327–330.
  • Xu, G.; Zhang, Q.; Zhou, W.; Huang, J.; Wei, F. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array. Appl. Phys. A. 2008, 92, 531–539.
  • Park, T.J.; Banerjee, S.; Hemraj-Benny, T.; Wong, S.S. Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J. Mater. Chem. 2006, 16, 141–154.
  • Wang, Z.; Liang, Z.; Wang, B.; Zhang, C.; Kramer, L. Processing and property investigation of single-walled carbon nanotube (SWCNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A Appl. Sci. Manufact. 2004, 35, 1225–1232.
  • Colbert, D.T. Single-wall nanotubes: A new option for conductive plastics and engineering polymers. Plast. Additiv. Compound. 2003, 5, 8–25.
  • Suppiger, D.; Busato, S.; Ermanni, P. Characterization of single-walled carbon nanotube mats and their performance as electromechanical actuators. Carbon 2008, 46, 1085–1090.
  • Sun, Z.; Nicolosi, V.; Rickard, D.; Bergin, S.D.; Aherne, D.; Coleman, J.N. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C. 2008, 112, 10692–10699.
  • Lin, T.; Bajpai, V.; Ji, T.; Dai, L. Chemistry of carbon nanotubes. Aust. J. Chem. 2003, 56, 635–651.
  • Wetzel, B.; Haupert, F.; Zhang, M.Q. Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 2003, 63, 2055–2067.
  • Lund, A.; Gustafsson, C.; Bertilsson, H.; Rychwalski, R.W. Enhancement of β phase crystals formation with the use of nanofillers in PVDF films and fibres. Compos. Sci. Technol. 2011, 71, 222–229.
  • Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385.
  • Danilenko, V.V. On the history of the discovery of nanodiamond synthesis. Phys. Solid State 2004, 46, 595–599.
  • Shenderova, O.A.; Zhirnov, V.V.; Brenner, D.W. Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 2002, 27, 227–356.
  • Krüger, A.; Kataoka, F.; Ozawa, M.A.A.; Fujino, T.; Suzuki, Y.; Aleksenskii, A.E.; Ōsawa, E. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 2005, 43, 1722–1730.
  • Khabashesku, V.N.; Margrave, J.L.; Barrera, E.V. Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 2005, 14, 859–866.
  • Whaley, S.R.; English, D.S.; Hu, E.L.; Barbara, P.F.; Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 2000, 405, 665–668.
  • Laikhtman, A.; Lafosse, A.; Le Coat, Y.; Azria, R.; Hoffman, A. Clarification of oxygen bonding on diamond surfaces by low energy electron stimulated desorption and high resolution electron energy loss spectroscopy. J. Chem. Phys. 2003, 119, 1794–1799.
  • Chung, P.H.; Perevedentseva, E.; Tu, J.S.; Chang, C.C.; Cheng, C.L. Spectroscopic study of bio-functionalized nanodiamonds. Diam. Relat. Mater. 2006, 15, 622–625.
  • Ugarte, D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 1992, 359, 707–709.
  • Qiao, Z.; Li, J.; Zhao, N.; Shi, C.; Nash, P. Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Script. Mater. 2006, 54, 225–229.
  • Butenko, Y.V.; Kuznetsov, V.L.; Chuvilin, A.L.; Kolomiichuk, V.N.; Stankus, S.V.; Khairulin, R.A.; Segall, B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J. Appl. Phys. 2000, 88, 4380–4388.
  • Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: A review. Asian. J. Pharmaceut. Clinic. Res. 2009, 2, 17–27.
  • Zheng, G.B.; Kouda, K.; Sano, H.; Uchiyama, Y.; Shi, Y.F.; Quan, H.J. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon 2004, 42, 635–640.
  • Li, C.; Chou, T.W. A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solid Struct. 2003, 40, 2487–2499.
  • Sinnott, S.B.; Andrews, R.; Qian, D.; Rao, A.M.; Mao, Z.; Dickey, E.C.; Derbyshire, F. Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 1999, 315, 25–30.
  • Zhang, X.; Sreekumar, T.V.; Liu, T.; Kumar, S. Properties and structure of nitric acid oxidized single wall carbon nanotube films. J. Phys. Chem. B. 2004, 108, 16435–16440.
  • Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano. Lett. 2006, 6, 2642–2645.
  • Kiang, C.H.; Goddard, W.A.; Beyers, R.; Bethune, D.S. Structural modification of single-layer carbon nanotubes with an electron beam. J. Phys. Chem. 1996, 100, 3749–3752.
  • Li, D.C.; Dai, L.; Huang, S.; Mau, A.W.; Wang, Z.L. Structure and growth of aligned carbon nanotube films by pyrolysis. Chem. Phys. Lett. 2000, 316, 349–355.
  • Rochefort, A.; Salahub, D.R.; Avouris, P. Effects of finite length on the electronic structure of carbon nanotubes. J. Phys. Chem. B. 1999, 103, 641–646.
  • Xie, S.; Li, W.; Pan, Z.; Chang, B.; Sun, L. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 2000, 61, 1153–1158.
  • Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.
  • Liu, L.; Wang, L.; Gao, J.; Zhao, J.; Gao, X.; Chen, Z. Amorphous structural models for graphene oxides. Carbon 2012, 50, 1690–1698.
  • Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Chhowalla, M. Atomic and electronic structure of graphene-oxide. Microscop. Microanal. 2010, 16, 1704–1705.
  • Botas, C.; Álvarez, P.; Blanco, C.; Santamaría, R.; Granda, M.; Ares, P.; Menéndez, R. The effect of the parent graphite on the structure of graphene oxide. Carbon 2012, 50, 275–282.
  • Dimiev, A.M.; Alemany, L.B.; Tour, J.M. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. A. C. S. Nano 2012, 7, 576–588.
  • Saxena, S.; Tyson, T.A.; Negusse, E. Investigation of the local structure of graphene oxide. J. Phys. Chem. Lett. 2010, 1, 3433–3437.
  • Ahn, S.I. Changing the sp2 carbon clusters in graphene oxide during exfoliation. Transact. Elect. Electron. Mater. 2015, 16, 49–52.
  • Cha, C.; Shin, S.R.; Gao, X.; Annabi, N.; Dokmeci, M.R.; Tang, X.S.; Khademhosseini, A. Controlling mechanical properties of cell‐laden hydrogels by covalent incorporation of graphene oxide. Small 2014, 10, 514–523.
  • Gómez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano. Lett. 2007, 7, 3499–3503.
  • Veerapandian, M.; Lee, M.H.; Krishnamoorthy, K.; Yun, K. Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon 2012, 50, 4228–4238.
  • Singh, S.K.; Singh, M.K.; Nayak, M.K.; Kumari, S.; Shrivastava, S.; Grácio, J.J.; Dash, D. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 2011, 5, 4987–4996.
  • Aboutalebi, S.H.; Chidembo, A.T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H.K.; Dou, S.X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 2011, 4, 1855–1865.
  • Huang, Z.D.; Zhang, B.; Liang, R.; Zheng, Q.B.; Oh, S.W.; Lin, X.Y.; Kim, J.K. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 2012, 50, 4239–4251.
  • Lin, X.; Liu, X.; Jia, J.; Shen, X.; Kim, J.K. Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers. Compos. Sci. Technol. 2014, 100, 166–173.
  • Nguyen, D.D.; Lai, Y.T.; Tai, N.H. Enhanced field emission properties of a reduced graphene oxide/carbon nanotube hybrid film. Diam. Relat. Mater. 2014, 47, 1–6.
  • Wang, S.C.; Yang, J.; Zhou, X.Y.; Li, J. Layer-by-layer assembled sandwich-like carbon nanotubes/graphene oxide composite as high-performance electrodes for lithium-ion batteries. Int. J. Electrochem. Sci. 2013, 8, 9692–9703.
  • Mani, V.; Chen, S.M.; Lou, B.S. Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. Int. J. Electrochem. Sci. 2013, 8, 11641–11660.
  • Li, X.; Chen, X.; Yao, Y.; Li, N.; Chen, X.; Bi, X. Multi-walled carbon nanotubes/graphene oxide composites for humidity sensing. IEEE Sens. J. 2013, 13, 4749–4756.
  • Zhang, C.; Tjiu, W.W.; Fan, W.; Yang, Z.; Huang, S.; Liu, T. Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly. J. Mater. Chem. 2011, 21, 18011–18017.
  • Kausar, A. Bucky papers of poly(methyl methacrylate-co-methacrylic acid)/polyamide 6 and graphene oxide-montmorillonite. J. Disper. Sci. Technol. 2016, 37, 66–72.
  • Huang, D.; Wang, W.; Xu, J.; Wang, A. Mechanical and water resistance properties of chitosan/poly(vinyl alcohol) films reinforced with attapulgite dispersed by high-pressure homogenization. Chem. Eng. J. 2012, 210, 166–172.
  • Yadav, M.; Ahmad, S. Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties. Int. J. Biol. Macromol. 2015, 79, 923–933.
  • Huang, W; Shen, J.; Li, N.; Ye, M. Study on a new polymer/graphene oxide/clay double network hydrogel with improved response rate and mechanical properties. Polym. Eng. Sci. 2015, 55, 1361–1366.
  • Wang, Q.; Li, G.; Zhang, J.; Huang, F.; Lu, K.; Wei, Q. PAN nanofibers reinforced with MMT/GO hybrid nanofillers. J. Nanomater. 2014, 2014, 35.
  • Wang, Q.; Plylahan, N.; Shelke, M.V.; Devarapalli, R.R.; Li, M.; Subramanian, P.; Szunerits, S. Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 2014, 68, 175–184.
  • Yao, Y.; Xue, Y. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuat. B Chem. 2015, 211, 52–58.
  • Kausar, A. Formation and properties of poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. Am. J. Polym. Sci. 2014, 4, 54–62.
  • Thanh, T.T.; Ba, H.; Truong-Phuoc, L.; Nhut, J.M.; Ersen, O.; Begin, D.; Pham-Huu, C. A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. J. Mater. Chem. A. 2014, 2, 11349–11357.
  • Neitzel, I.; Mochalin, V.; Knoke, I.; Palmese, G.R.; Gogotsi, Y. Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 2011, 71, 710–716.
  • Zhai, Y.J.; Wang, Z.C.; Huang, W.; Huang, J.J.; Wang, Y.Y.; Zhao, Y.Q. Improved mechanical properties of epoxy reinforced by low content nanodiamond powder. Mater. Sci. Eng. A. 2011, 528, 7295–7300.
  • Cho, H.B.; Konno, A.; Fujihara, T.; Suzuki, T.; Tanaka, S.; Jiang, W.; Nakayama, T. Self-assemblies of linearly aligned diamond fillers in polysiloxane/diamond composite films with enhanced thermal conductivity. Compos. Sci. Technol. 2011, 72, 112–118.
  • Shenderova, O.; Tyler, T.; Cunningham, G.; Ray, M.; Walsh, J.; Casulli, M.; Lipa, S. Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 2007, 16, 1213–1217.
  • Lang, D.; Krueger, A. The Prato reaction on nanodiamond: Surface functionalization by formation of pyrrolidine rings. Diam. Relat. Mater. 2011, 20, 101–104.
  • Kang, E.; Choi, S.; Choi, C.; Shim, S.E. Aqueous dispersion of submicron-sized diamond particles for thermally conductive polyurethane coating. Colloid. Surf. A Physicochem. Eng. Aspect 2012, 415, 255–261.
  • Zhang, H.H.; Liu, Y.T.; Wang, R.; Yu, X.Y.; Qu, X.W.; Zhang, Q.X. Functionalization of nanodiamond with epoxy monomer. Chin. Chem. Lett. 2011, 22, 485–488.
  • Ayatollahi, M.R.; Alishahi, E.; Doagou-R, S.; Shadlou, S. Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Compos. Part B Eng. 2012, 43, 3425–3430.
  • Jee, A.Y.; Lee, M. Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Curr. Appl. Phys. 2011, 11, 1183–1187.
  • Tamburri, E.; Orlanducci, S.; Guglielmotti, V.; Reina, G.; Rossi, M.; Terranova, M.L. Engineering detonation nanodiamond–polyaniline composites by electrochemical routes: Structural features and functional characterizations. Polymer. 2011, 52, 5001–5008.
  • Yu, J.; Qian, R.; Jiang, P. Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler. Fibers Polym. 2013, 14, 1317–1323.
  • Gonnet, P., Liang, Z.; Choi, E.S.; Kadambala, R.S.; Zhang, C., Brooks, J.S.; Kramer, L. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr. Appl. Phys. 2006, 6, 119–122.
  • Laird, E.D.; Wang, W.; Cheng, S.; Li, B.; Presser, V.; Dyatkin, B.; Li, C.Y. Polymer single crystal-decorated superhydrophobic buckypaper with controlled wetting and conductivity. ACS Nano 2012, 6, 1204–1213.
  • Knapp, W.; Schleussner, D. Carbon buckypaper field emission investigations. Vacuum 2002, 69, 333–338.
  • Cranford, S.W.; Buehler, M.J. In silico assembly and nanomechanical characterization of carbon nanotube buckypaper. Nanotechnology 2010, 21, 265706.
  • Dumée, L.; Germain, V.; Sears, K.; Schütz, J.; Finn, N.; Duke, M.; Gray, S. Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation. J. Membr. Sci. 2011, 376, 241–246.
  • Roy, S.; Bajpai, R.; Soin, N.; Bajpai, P.; Hazra, K.S.; Kulshrestha, N.; Misra, D.S. Enhanced field emission and improved supercapacitor obtained from plasma‐modified bucky paper. Small 2011, 7, 688–693.
  • Hussein, L.; Urban, G.; Krüger, M. Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications. Phys. Chem. Chem. Phys. 2011, 13, 5831–5839.
  • Zaeri, M.M.; Ziaei-Rad, S.; Vahedi, A.; Karimzadeh, F. Mechanical modelling of carbon nanomaterials from nanotubes to buckypaper. Carbon 2010, 48, 3916–3930.
  • Rein, M.D.; Breuer, O.; Wagner, H.D. Sensors and sensitivity: Carbon nanotube buckypaper films as strain sensing devices. Compos. Sci. Technol. 2011, 71, 373–381.
  • Zhang, J.; Jiang, D.; Peng, H.X.; Qin, F. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon. 2013, 63, 125–132.
  • Kakade, B.; Mehta, R.; Durge, A.; Kulkarni, S.; Pillai, V. Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano. Lett. 2008, 8, 2693–2696.
  • Titelman, G.I.; Gelman, V.; Bron, S.; Khalfin, R.L.; Cohen, Y.; Bianco-Peled, H. Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon. 2005, 43, 641–649.
  • Khan, D.M.; Kausar, A.; Salman, S.M. Fabrication and characterization of polyvinyl chloride/poly(styrene-co-maleic anhydride) intercalated functional nanobifiller-based composite paper. Int. J. Polym. Anal. Char. 2016, 21, 228–243.
  • Khan, D.M.; Kausar, A.; Salman, S.M. Buckypapers of polyvinyl chloride/poly(styrene-co-maleic anhydride) blend intercalated graphene oxide-carbon nanotube nanobifiller: Physical property exploration. Fuller Nanotube Carbon Nanostruct. 2016, 24, 202–212.
  • Putz, K.W.; Palmeri, M.J.; Cohn, R.B.; Andrews, R.; Brinson, L.C. Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules 2008, 41, 6752–6756.
  • Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.
  • Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular‐level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 2009, 19, 2297–2302.
  • Yan, X.; Chen, J.; Yang, J.; Xue, Q.; Miele, P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide−polyaniline and graphene−polyaniline hybrid papers. ACS Appl. Mater. Interface 2010, 2, 2521–2529.
  • Suk, J.W.; Piner, R.D.; An, J.; Ruoff, R.S. Mechanical properties of monolayer graphene oxide. ACS Nano. 2010, 4, 6557–6564.
  • Khan, Z.U.; Kausar, A.; Ullah, H. A review on composite papers of graphene oxide, carbon nanotube, polymer/GO, and polymer/CNT: Processing strategies, properties, and relevance. Polym. Plast. Technol. Eng. 2016, 55, 559–581.
  • Wang, Z.; Liang, Z.; Wang, B.; Zhang, C.; Kramer, L. Processing and property investigation of single-walled carbon nanotube (SWCNT) buckypaper/epoxy resin matrix nanocomposites. Compos. Part A Appl. Sci. Manufact. 2004, 35, 1225–1232.
  • Coleman, J.N.; Blau, W.J.; Dalton, A.B.; Munoz, E.; Collins, S.; Kim, B.G.; Baughman, R.H. Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl. Phys. Lett. 2003, 82, 1682–1684.
  • Lu, S.; Xu, W.; Xuhai, X.; Ma, K.; Wang, X. Preparation, magnetism and microwave absorption performance of ultra-thin Fe3O4/carbon nanotube sandwich buckypaper. J. Alloy. Compound. 2014, 606, 171–176.
  • Agrawal, S.; Raghuveer, M.S.; Li, H.; Ramanath, G. Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl. Phys. Lett. 2007, 90, 193104.
  • Dinicola, S.; Masiello, M.G.; Proietti, S.; Coluccia, P.; Fabrizi, G.; Palombo, A.; De Toma, G. Multiwalled carbon nanotube buckypaper induces cell cycle arrest and apoptosis in human leukemia cell lines through modulation of AKT and MAPK signaling pathways. Toxicol. Vitro. 2015, 29, 1298–1308.
  • Bellucci, S. Toxicological and biological in vitro and in vivo effects of carbon nanotubes buckypaper, 2009 Int. Semiconduct. Conference, Sinaia, Oct 12–14, 2009, 1, 107–116. IEEE.
  • Martinelli, A.; Carru, G.A.; D’Ilario, L.; Caprioli, F.; Chiaretti, M.; Crisante, F.; Piozzi, A. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue. ACS Appl. Mater. Interface 2013, 5, 4340–4349.
  • Brown, B.; Swain, B.; Hiltwine, J.; Brooks, D.B.; Zhou, Z. Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance. J. Power Source 2014, 272, 979–986.
  • Zheng, C.; Qian, W.; Yu, Y.; Wei, F. Ionic liquid coated single-walled carbon nanotube buckypaper as supercapacitor electrode. Particuology 2013, 11, 409–414.
  • Ohta, K.; Nishizawa, T.; Nishiguchi, T.; Shimizu, R.; Hattori, Y.; Inoue, S.; Katayama, M.; Mizu-Uchi, K.; Kono, T. Synthesis of carbon nanotubes by microwave heating: Influence of diameter of catalytic Ni nanoparticles on diameter of CNTs. J. Mater. Chem. A 2014, 2, 2773–2780.
  • Ma, C.W.; Huang, P.C.; Yang, Y.J. A paper-like micro-supercapacitor with patterned buckypaper electrodes using a novel vacuum filtration technique, 2015 28th IEEE International Conference on Micro Electro Mechanical System (MEMS), Estoril, Jan 18–22, 2015; 1067–1070. IEEE.
  • Zhou, W.; Xiao, J.; Chen, Y.; Zeng, R.; Xiao, S.; Nie, H.; Song, C. Sulfonated carbon nanotubes/sulfonated poly(ether sulfone ether ketone ketone) composites for polymer electrolyte membranes. Polym. Adv. Technol. 2011, 22, 1747–1752.
  • Dong, B.; Gwee, L.; Salas-de La Cruz, D.; Winey, K.I.; Elabd, Y.A. Super proton conductive high-purity Nafion nanofibers. Nano. Lett. 2010, 10, 3785–3790.
  • Kannan, R.; Parthasarathy, M.; Maraveedu, S.U.; Kurungot, S.; Pillai, V.K. Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. Langmuir 2009, 25, 8299–8305.
  • Zhang, L.; Zhao, B.; Wang, X.; Liang, Y.; Qiu, H.; Zheng, G.; Yang, J. Gas transport in vertically-aligned carbon nanotube/parylene composite membranes. Carbon 2014, 66, 11–17.
  • Celik, E.; Park, H.; Choi, H.; Choi, H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011, 45, 274–282.
  • Ge, L.; Zhu, Z.; Rudolph, V. Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Separat. Purif. Technol. 2011, 78, 76–82.
  • Weng, T.H.; Tseng, H.H.; Wey, M.Y. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int. J. Hydrogen Energy 2009, 34, 8707–8715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.