976
Views
38
CrossRef citations to date
0
Altmetric
Review

Effectiveness of Polystyrene/Carbon Nanotube Composite in Electromagnetic Interference Shielding Materials: A Review

, &

References

  • Akram, Z.; Kausar, A.; Siddiq, M. Review on polymer/carbon nanotube composite focusing polystyrene MICROSPHERE and polystyrene microsphere/modified CNT composite: Preparation, properties, and significance. Polym. Plast. Technol. Eng. 2016, 55, 582–603.
  • Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56.
  • Kausar, A.; Rafique, I.; Muhammad, B. A review on applications of polymer/carbon nanotube and epoxy/CNT composites. Polym. Plast. Technol. Eng. 2016, 55, 1167–1191. doi:10.1080/03602559.2016.1163588.
  • Rafique, I.; Kausar, A.; Anwar, Z.; Muhammad, B. Exploration of epoxy resins, hardening systems and epoxy/carbon nanotube composite designed for high performance materials: A review. Polym. Plast. Technol. Eng. 2015, 55, 312–333. doi:10.1080/03602559.2015.1070874.
  • Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
  • Saini, P. Conjugated Polymer-Based Blends, Copolymers, and Composites: Synthesis, Properties, and Applications. Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, John Wiley & Sons, Inc.: Hoboken, NJ, 2015, Chapter 1; pp.1–118.
  • Saini, P. Intrinsically conducting polymer-based blends and composites for electromagnetic interference shielding: Theoretical and experimental aspects. In: Saini, P. ed. Fundamentals of Conjugated Polymer Blends, Copolymers and Composites: Synthesis, Properties and Applications, John Wiley & Sons, Inc.: Hoboken, NJ, 2015, Chapter 9; pp. 449–518.
  • Saini, P.; Arora, M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In: De Souza Gomes, A. ed. New Polymers for Special Applications, InTech: Croatia, 2012; pp. 71–112.
  • Saini, P. Electrical properties and electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. In: Mittal, V. ed. Thermoset Nanocomposites, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp. 211–237.
  • Saini, P.; Choudhary, V.; Vijayan, N.; Kotnala, R.K. Improved electromagnetic interference shielding response of poly (aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 2012, 116, 13403–13412.
  • Saini, P.; Choudhary, V.; Singh, B.P.; Dhawan, S.K.; Mathur, R.B. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 2009, 113, 919–926.
  • Saini, P.; Arora, M. Formation mechanism, electronic properties & microwave shielding by nano-structured polyanilines prepared by template free route using surfactant dopants. J. Mater. Chem. A 2013, 1, 8926–8934.
  • Saini, P.; Arora, M.; Gupta, G.; Gupta, B.K.; Singh, V.N.; Choudhary, V. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale 2013, 5, 4330–4336.
  • Saini, P.; Choudhary, V.; Singh, B.P.; Mathur, R.B.; Dhawan, S.K. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Syn. Met. 2011, 161, 1522–1526.
  • Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P.C. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 2006, 6, 1141–1145.
  • Verma, P.; Saini, P.; Choudhary, V. Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 2015, 88, 269–277.
  • Verma, P.; Saini, P.; Malik, R.S.; Choudhary, V. Excellent electromagnetic interference shielding and mechanical properties of high loading carbon-nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon 2015, 89, 308–317.
  • Louie, S.G. Electronic Properties, Junctions, and Defects of Carbon Nanotubes. Springer: Berlin Heidelberg, 2001, pp. 113–145.
  • Terrones, M. Carbon nanotubes: Synthesis and properties, electronic devices and other emerging applications. Int. Mater. Rev. 2004, 49, 325–377.
  • Kiang, C.H.; Goddard, W.A.; Beyers, R.; Bethune, D.S. Structural modification of single-layer carbon nanotubes with an electron beam. J. Phys. Chem. 1996, 100, 3749–3752.
  • Odom, T.W.; Huang, J.L.; Kim, P.; Lieber, C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.
  • Cao, J.X.; Yan, X.H.; Ding, J.W.; Wang, D.L. Band structures of carbon nanotubes: The sp3s* tight-binding model. J. Phys. Condens. Matter. 2001, 13, L271.
  • Itkis, M.E.; Niyogi, S.; Meng, M.E.; Hamon, M.A.; Hu, H.; Haddon, R.C. Spectroscopic study of the fermi level electronic structure of single-walled carbon nanotube. Nano Lett. 2002, 2, 155–159.
  • Cioslowski, J.; Rao, N.; Moncrieff, D. Electronic structures and energetics of [5, 5] and [9, 0] single-walled carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 8485–8489.
  • Filleter, T.; Bernal, R.; Li, S.; Espinosa, H.D. Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles. Adv. Mater. 2011, 23, 2855–28560.
  • Zhang, J.; Wang, X.; Ma, J.; Liu, S.; Yi, X. Preparation of cobalt hydroxide nanosheetson carbon nanotubes/carbon paper conductive substrate for supercapacitorapplication. Electrochim. Acta 2013, 104, 110–116.
  • Liu, X.M.; Huang, Z.D.; Oh, S.W.; Zhang, B.; Ma, P.C.; Carbon nanotube (CNT) based composites as electrode material for rechargeable Li ion batteries: A review. Compos. Sci. Technol. 2012, 72, 121–144.
  • Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.
  • Heinze, S.; Tersoff, J.; Avouris, P. Electrostatic engineering of nanotube transistors for improved performance. Appl. Phys. Lett. 2003, 83, 5038–5040.
  • Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes: Synthesis, Properties and Applications. Springer: Berlin, 2001.
  • Liang, W.; Bockrath, M.; Bozovic, D.; Hafner, J.H.; Tinkham, M.; Park, H. Fabry-Perot interference in a nanotube electron waveguide. Nature 2001, 411, 665–669.
  • Tang, Z.K.; Zhang, L.; Wang, N.; Zhang, X.X.; Wen, G.H.; Li, G.D.; Wang, J.N.; Chan, C.T.; Sheng, P. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 2001, 292, 2462–2465.
  • Niu, C.; Kupperschmidt, J.; Hock, R. Proceedings of the 39th Power Sources Conference. Maple Hill, NJ, 2000; pp. 314–317.
  • Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2007, 2, 417–424.
  • Sandler, J.; Kirk, J.; Kinloch, I.; Shaffer, M.; Windle, A. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899.
  • Le, H.H.; Wiebner, S.; Das, A.; Ficher, D.; Landwehr, M.A.D.; Do, Q.K.; Stockelhuber, K.W.; Heinrich, G.; Radusch, H.J. Selective wetting of carbon nanotubes in rubber compounds – Effect of the ionic liquid as dispersing and coupling agent. Eur. Polym. J. 2016, 75, 13–24.
  • Feng, C.X.; Duan, J.; Yang, J.H.; Huang, T.; Zhang, N.; Wang, Y.; Zheng, X.T.; Zhou, Z.W. Carbon nanotubes accelerated poly(vinylidene fluoride) crystallization from miscible poly(vinylidene fluoride)/poly(methyl methacrylate blend and the resultant crystalline morphologies. Eur. Polym. J. 2015, 68, 175–189.
  • Keronimo, K.; Cruz, V.L.; Ramos, J.; Vega, J.F.; Trujillo, M.; Muller, A.J.; Salazar, J.M. Computer simulations of the early stages of crystal nucleation of linear and short chain branched polyethylene on carbon nanotubes. Eur. Polym. J. 2014, 56, 194–204.
  • Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.
  • Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.F.; Ruoff, R.S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533.
  • De Volder, M.F.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
  • Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.
  • Yu, M.F.; Files, B.S.; Arepalli, S.; Ruoff, R.S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552.
  • Frank, S.; Poncharal, P.; Wang, Z.L.; de Heer, W.A. Carbon nanotube quantum resistors. Science. 1998, 280, 1744–1746.
  • Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, 115–120.
  • Heer, W.A.; Châtelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179–1180.
  • Vaisman, L.; Wagner, H.D.; Marom, G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid. Interface. Sci. 2006, 130, 37–46.
  • Bianco, A.; Kostarelos, K.; Prato, M. Making carbon nanotubes biocompatible and biodegradable. Chem. Commun. 2011, 47, 10182–10188.
  • Frank S, Poncharal P, Wang ZL, Heer WA. Carbon nanotube quantum resistors. Science. 1998, 280, 1744–1746.
  • Li, L.L.; Lin, R.; He, H.; Jiang, L.; Gao, M.M. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. Spectrochim. Acta Part A 2013, 105, 45–51.
  • Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical-conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56.
  • Dresselhaus, M.S.; Dresselhaus G.; Eklund, P.C. The Science of Fullerenes and Carbon Nanotubes. Academic Press: New York, 1996.
  • Gao, G.; Cagin, T.; Goddard III, W.A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 1998, 9, 184.
  • Hone, J. Phonons and thermal properties of carbon nanotubes. In Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P., eds. Carbon Nanotubes. Springer: Berlin Heidelberg, 2001; pp. 273–286.
  • Yi, W.; Lu, L.; Dian-Lin, Z.; Pan, Z.W.; Xie, S.S. Linear specific heat of carbon nanotubes. Phys. Rev. B 1999, 59, R9015.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136.
  • Thakre, P.R.; Bisrat, Y.; Lagoudas, D.C. Electrical and mechanical properties of carbon nanotube-epoxy composites. J. Appl. Polym. Sci. 2010, 116, 191–202.
  • Titus, E.; Ali, N.; Cabral, G.; Gracio, J.; Ramesh Babu, P.; Jackson, M.J. Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, Fourier transform infrared, and Raman spectroscopy. J. Mater. Eng. Perform. 2006, 15, 182–186.
  • Thostenson, E.T.; Li, C.; Chou, T.W. Nanocomposites in context. Compos. Sci. Technol. 2005, 65(3), 491–516.
  • Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498.
  • Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O. Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2007, 2, 417–421.
  • Le, H.H.; Wiebner, S.; Das, A.; Ficher, D.; Landwehr, M.A.D.; Do, Q.K.; Stockelhuber, K.W.; Heinrich, G.; Radusch, H.J. Selective wetting of carbon nanotubes in rubber compounds – effect of the ionic liquid as dispersing and coupling agent. Eur. Polym. J. 2016, 75, 13–24.
  • Scheirs, J.; Priddy, D.B. Modern Styrenic Polymers: Polystyrenes and Styrenic Copolymers, Wiley: Chichester, 2003.
  • Chen, X.; Tao, F.; Wang, J.; Yang, H.; Zou, J.; Chen, X.; Feng, X. Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Mat. Sci. Eng. A 2009, 499, 469–475.
  • Mitchell, C.A.; Bahr, J.L.; Arepalli, S.; Tour, J.M.; Krishnamoorti, R. Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002, 35, 8825–8830.
  • Kota, A.K.; Cipriano, B.H.; Duesterberg, M.K.; Gershon, A.L.; Powell, D.; Raghavan, S.R.; Bruck, H.A. Electrical and rheological percolation in polystyrene/MW CNT composites. Macromolecules 2007, 40, 7400–7406.
  • Boncel, S.; Koziol, K.; Walczak, K.; Windle, A.; Shaffer, M. Infiltration of highly aligned carbon nanotube arrays with molten polystyrene. Mater. Lett. 2011, 6, 2299–2303.
  • González, C.; Macías, M.; Márquez, A.; Kaur, J.; Shofner, M.; Cantú, Y. Polystyrene composites with very high carbon nanotubes loadings by in situ grafting polymerization. J. Mater. Res. 2013, 28, 1087–1096.
  • Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A 2010, 41, 1345–1367.
  • Durmus, A.; Kasgoz, A.; Macosko, C.W. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 2007, 48, 4492–4502.
  • Thostenson, E.; Chou, T. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77–L80.
  • Park, C.; Mostofa, M.; Mahmoodi, M.; Park, S. Micromechanical scribing and indentation behavior of injection-molded polymeric carbon nanotube (CNT) nanocomposites. Int. J. Adv. Manuf. Technol. 2013, 68, 391–405.
  • Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403.
  • Kaseem, M.; Hamad, K.; Ko, Y.G. Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: A review. Eur. Polym. J. 2016, 79, 36–62.
  • Zhang, B.; Fu, R.W.; Zhang, M.Q.; Dong, X.M.; Lan, P.L.; Qiu, J.S. Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene. Sens. Actuat. B Chem. 2005, 109, 323–328.
  • Sun, G.; Chen, G.; Liu, Z.; Chen, M. Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon 2010, 48, 1434–1440.
  • Grossiord, N., Miltner, H.E., Loos, J., Meuldijk, J., Van Mele, B., Koning, C.E. On the crucial role of wetting in the preparation of conductive polystyrene-carbon nanotube composites. Chem. Mater. 2007, 19, 3787–3792.
  • Thostenson, E.T.; Chou, T.W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77.
  • Yuan, J.M.; Fan, Z.F.; Chen, X.H.; Chen, X.H.; Wu, Z.J.; He, L.P. Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 2009, 50, 3285–3291.
  • Koziol, K.K.; Boncel, S.; Shaffer, M.S.; Windle, A.H. Aligned carbon nanotubepolystyrene composites prepared by in situ polymerisation of stacked layers. Compos. Sci. Technol. 2011, 71, 1606–1611.
  • Lin, T.S.; Cheng, L.Y.; Hsiao, C.C.; Yang, A.C.M. Percolated network of entangled multi-walled carbon nanotubes dispersed in polystyrene thin films through surface grafting polymerization. Chem. Phys. 2005, 94, 438–443.
  • Amr, I.T.; Al-Amer, A.; Al-Harthi, M.; Girei, S.A.; Sougrat, R.; Atieh, M.A. Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites. Compos. Part B Eng. 2011, 42, 1554–1561.
  • Zhu, Y.; Du, Z.; Li, H.; Zhang, C. Preparation and crystallization behavior of multiwalled carbon nanotubes/poly (vinyl alcohol) nanocomposites. Polym. Eng. Sci. 2011, 51, 1770–1779.
  • Amr, I.T., Al-Amer, A., Thomas, S.P., Sougrat, R., Atieh, M.A. Mechanical, rheological and thermal properties of polystyrene/1-octadecanol modified carbon nanotubes nanocomposites. Full. Nanotub. Carb. Nanostruct. 2015, 23, 209–217.
  • Rahaman, M.; Chaki, T.K.; Khastgir, D. Development of high performance EMI shielding material from EVA, NBR, and their blends: Effect of carbon black structure. J. Mater. Sci. 2011, 46, 3989–3999.
  • Zhang, L.Y.; Ma, J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam. Compos. Sci. Technol. 2010, 70, 1265–1271.
  • Kwon, S.; Ma, R.; Kim, U.; Choi, H.R.; Baik, S. Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 2014, 68, 118–124.
  • Zhang, L.; Wang, L.B.; See, K.Y.; Ma, J. Effect of carbon nanofiber reinforcement on electromagnetic interference shielding effectiveness of syntactic foam. J. Mater. Sci. 2013, 48, 7757–7763.
  • Ghodake, J.S.; Kambale, R.C.; Shinde, T.J.; Maskar, P.K.; Suryavanshi, S.S. Magnetic and microwave absorbing properties of Co2+substituted nickel-zinc ferrites with the emphasis on initial permeability studies. J. Magnet. Magnet. Mater. 2016, 401, 938–942.
  • Colaneri, N.F.; Schacklette, L.W. EMI shielding measurements of conductive polymer blends. IEEE Trans. Instrum. Meas. 1992, 41, 291–297.
  • Chen, Y.J.; Li, Y.; Chu, B.T.T.; Kuo, I.T.; Yip, M.; Tai, N. Porous comosites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding. Compos. Part B. 2015, 70, 231–237.
  • Xiang, C.S.; Pan, Y.B.; Liu, X.J,; Sun, X.W.; Shi, X.M.; Guo, J.K. High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 2005, 87, 161910.
  • Singh, B.P.; Choudhary, V.; Teotia, S.; Gupta, T.K.N.V.; Singh, S.R.D.; Mathur, R.B. Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv. Mater. Lett. 2015, 6, 104–113.
  • Huang, Y.; Li, N.; Ma, Y.; Feng, D.; Li, F.; He, X.; Lin, X.; Gao, H.; Chen, Y. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 2007, 45, 1614–1621.
  • Li, Y.; Chen, C.; Li, J.T.; Zhang, S.; Ni, Y.; Cai, S.; Huang, J. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite. Nanoscal. Res. Lett. 2010, 5, 1170–1176.
  • Arjmand, M.; Mahmoodi, M.; Gelves, G.A.; Park, S.; Sundararaj, U. Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 2011, 49, 3430–3440.
  • Park, J.G.; Louis, J.; Cheng, Q.F.; Bao, J.W.; Smithyman, J.; Liang, R.; Wang.; B.; Zhang, C.; Brooks, J.S.; Kramer, L.; Fanchasis, P.; Dorough, D. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 2009, 20, 415702–415708.
  • Faisal, M.; Khasim, S. Polyaniline–stannous oxide composites: Novel material for broadband EMI shielding. Adv. Mater. Res. 2012, 488–489, 557–561.
  • Khasim, S.; Raghavendra, S.C.; Revanasiddappa, M.; Sajjan, K.C.; Lakshmi, M.; Faisal, M. Synthesis, characterization and magnetic properties of polyaniline/c-Fe2O3. Compos. Bull. Mater. Sci. 2002, 34, 1557–1561.
  • Zhang, Y.; Li, G.; Zhang, J.; Zhang, L. Shape-controlled growth of one-dimensional Sb2O3 nanomaterials. Nanotechnology 2004, 15, 762–765.
  • Faisal, M.; Khasim, S. Polyaniline–stannous oxide composites: Novel material for broadband EMI shielding. Adv. Mater. Res. 2012, 488, 557–561.
  • Valentini, M.; Piana, F.; Pionteck, J.; Lamastra, F.R.; Nanni, F. Electromagnetic properties and performance of exfoliated graphite(EG) thermoplastic polyurethane (TPU) nanocomposites at microwaves. Compos. Sci. Technol. 2015, 114, 26–33.
  • Frackowiak, S.; Ludwiczak, J.; Leluk, K.; Orzechowski, K.; Kozlowski, M. Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding. Mater. Des . 2015, 65, 749–756.
  • Song, J.; Yang, W.; Liu, X.; Zhang, W.; Zhang, Y. ASA/graphite/carbon black composites with improved EMI SE, conductivity and heat resistance properties. Iran. Polym. J. 2016, 25, 111–118.
  • Pan, F.S.; Zhang, Z.H.; Chen, X.H.; Liu, J. Electromagnetic shielding properties of magnesium and magnesium alloys. J. Mater. Eng. 2013, 1, 52–57.
  • Chen, X.; Liu, J.; Pan, F. Enhanced electromagnetic interference shielding in ZK60 magnesium alloy by aging precipitation. J. Phys. Chem. Sol. 2013, 74, 872–878.
  • Chung, D.D.L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 2012, 50, 3342–3353.
  • Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285.
  • Thomassin, J.M.; Jerome, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng Rep. 2013, 74, 211–232.
  • Song, W.L.; Wang, J.; Fan, L.Z.; Li, Y.; Wang, C.Y.; Cao, M.S. Interfacial engineering of carbon nanofiber–graphene–carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfac. 2014, 6, 10516.
  • Zhang, B.; Dong, X.; Fu, R.; Zhao, B.; Zhang, M. The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors. Compos. Sci. Technol. 2008, 68, 1357–1362.
  • Shen, J.; Han, X.; Lee, L.J. Nanoscaled reinforcement of polystyrene foams using carbon nanofibers. J. Cellular Plast. 2006, 42, 105–126.
  • Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134.
  • Yang, Y.; Gupta, M.C.; Dudley, K.L. Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 2007, 18, 345701.
  • Mahmoodi, M.; Arjmand, M.; Sundararaj, U.; Park, S. The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 1455–1464.
  • Al-Saleh, M.H.; Gelves, G.A.; Sundararaj, U. Copper nanowire/polystyrene nanocomposites: Lower percolation threshold and higher EMI shielding. Compos. Part A Appl. Sci. Manuf. 2011, 42, 92–97.
  • Rohini, R.; Bose, S. Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in polystyrene/poly(methyl methacrylate) blends. ACS Appl. Mater. Interfac. 2014, 6, 11302–11310.
  • Fletcher, A.; Gupta, M.C.; Dudley, K.L.; Vedeler, E. Elastomer foam nanocomposites for electromagnetic dissipation and shielding applications. Compos. Sci. Technol. 2010, 70, 953–958.
  • Song, W.L.; Wang, J.; Fan, L.Z.; Li, Y.; Wang, C.Y.; Cao, M.S. Interfacial engineering of carbon nanofiber–graphene–carbon nanofiber heterojunctions in flexible lightweight electromagnetic shielding networks. ACS Appl. Mater. Interfac. 2014, 6, 10516–10523.
  • Rohini, R.; Lasitha, K.; Bose, S. Epoxy composites containing cobalt (II)-porphine anchored multiwalled carbon nanotubes as thin electromagnetic interference shields, adhesives and coatings. J. Mater. Chem. C 2016, 4, 352–361.
  • Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126–5134.
  • Chen, Y.; Wang, Y.; Zhang, H.B.; Li, X.; Gui, C.X.; Yu, Z.Z. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon 2015, 82, 67–76.
  • Kong, L.; Yin, X.; Zhang, Y.; Yuan, X.; Li, Q.; Ye, F.; Cheng, L.; Zhang, L. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C. 2013, 117, 19701–19711.
  • Song, W.L.; Cao, M.S.; Lu, M.M.; Yang, J.; Ju, H.F.; Hou, Z.L.; Liu, J.; Yuan, J.; Fan, L.Z. Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 2013, 24, 115708.
  • Qajar, A.; Peer, M.; Rajagopalan, R.; Liu, Y.; Brown, C.; Foley, H.C. Surface compression of light adsorbates inside microporous PFA-derived carbons. Carbon 2013, 60, 538–549.
  • Song, W.L.; Cao, M.S.; Fan, L.Z.; Lu, M.M.; Li, Y.; Wang, C.Y.; Ju, H.F. Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 2014, 77, 130–142.
  • Ameli, A.; Jung, P.U.; Park, C.B. Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 2013, 60, 379–391.
  • Han, M.S.; Lee, Y.K.; Kim, W.N.; Lee, H.S.; Joo, J.S.; Park, M.; Park, C.R. Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites. Macromol. Res. 2009, 17, 863–869.
  • Li, Q.F.; Xu, Y.;Yoon, J.S.; Chen, G.X. Dispersions of carbon nanotubes/polyhedral oligomeric silsesquioxanes hybrids in polymer: The mechanical, electrical and EMI shielding properties. J. Mater. Sci. 2011, 46, 2324–2330.
  • Li, Y.; Chen, C.; Li, J.T.; Zhang, S.; Ni, Y.; Cai, S.; Huang, J. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite. Nanoscal. Res. Lett. 2010, 5, 1170.
  • Saini, P.; Choudhary, V. Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J. Nanoparticl. Res. 2013, 15, 1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.