148
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Properties of Redox-Active Polyimides with 3,5-Bis(trifluoromethyl)- or 3,5-Dimethyl-Substituted Triphenylamine Groups

&

References

  • Sroog, C.E. Polyimides. Prog. Polym. Sci. 1991, 16, 561–694.
  • Ghosh, M.M.; Mittal, K.L. eds. Polyimides: Fundamentals and Applications, Marcel Dekker: New York, 1996.
  • Liou, G.S.; Yen, H.J. Polyimides. In: Matyjaszewski, K.; Moller, M. eds. Polymer Science: A Comprehensive Reference, Vol. 5, Elsevier BV: Amsterdam, 2012; pp. 497–535.
  • Fang, J.; Guo, X.; Harada, S.; Watari, T.; Tanaka, K.; Kita, H.; Okamoto, K. Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 1. Synthesis, proton conductivity, and water stability of polyimides from 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid. Macromolecules 2002, 35, 9022–9028.
  • Asano, N.; Aoki, M.; Suzuki, S.; Miyatake, K.; Uchida, H.; Watanabe, M. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J. Am. Chem. Soc. 2006, 128, 1762–1769.
  • Rusanov, A.L.; Bulycheva, E.G.; Bugaenko, M.G.; Voytekunas, V.Y.; Adadie, M.J.M. Sulfonated polynaphthylimides as proton-conducting membranes for fuel cells. Russ. Chem. Rev. 2009, 78, 53–75.
  • Chen, J.C.; Wu, J.A.; Chen, K.H. Synthesis and characterization of novel imidazolium-functionalized polyimides for high temperature proton exchange membrane fuel cells. RSC Adv. 2016, 6, 33959–33970.
  • Liu, J.G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and characterization of highly refractive polyimides from 4,4′-thiobis[(p-phenylenesulfanyl)aniline] and various aromatic tetracarboxylic dianhydrides. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 5606–5617.
  • Liu, J.G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. High refractive index polyimides derived from 2,7-bis(4-aminophenylenesulfanyl)thianthrene and aromatic dianhydrides. Macromolecules 2007, 40, 4614–4620.
  • Terraza, C.A.; Liu, J.G.; Nakamura, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and properties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1510–1520.
  • Liu, J.G.; Ueda, M. High refractive index polymers: Fundamental research and practical applications. J. Mater. Chem. 2009, 19, 8907–8919.
  • Fukukawa, K.; Ueda, M. Recent progress of photosensitive polyimides. Polym. J. 2008, 40, 281–296.
  • Ghanem, B.S.; McKeown, N.B.; Budd, P.M.; Delbie, J.D.; Fritsch, D. High-performance membranes from polyimides with intrinsic microporosity. Adv. Mater. 2008, 20, 2766–2771.
  • Maya, E.M.; Garcia-Yoldi, I.; Lozano, A.E.; de la Campa, J.G.; de Abajo, J. Synthesis, characterization, and gas separation properties of novel copolyimides containing adamantyl ester pendant groups. Macromolecules 2011, 44, 2780–2790.
  • Yen, H.J.; Guo, S.M.; Yeh, J.M.; Liou, G.S. Triphenylamine-based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3637–3646.
  • Yen, H.J.; Wu, J.H.; Huang, Y.H.; Wang, W.C.; Lee, K.R.; Liou, G.S. Novel thermally stable and soluble triarylamine functionalized polyimides for gas separation. Polym. Chem. 2014, 5, 4219–4226.
  • Cheng, S.H.; Hsiao, S.H.; Su, T.H.; Liou, G.S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: Synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules 2005, 38, 307–316.
  • Kung, Y.C.; Hsiao, S.H. Solution-processable, high-Tg, ambipolar polyimide electrochromics bearing pyrenylamine units. J. Mater. Chem. 2011, 21, 1746–1754.
  • Yen, H.J.; Liou, G.S. Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polym. Chem. 2012, 3, 255–264.
  • Wang, H.M.; Hsiao, S.H. Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units. J. Mater. Chem. C 2014, 2, 1553–1564.
  • Ling, Q.D.; Chang, F.C.; Song, Y.; Zhu, C.X.; Liaw, D.J.; Chan, D.S.; Kang, E.T.; Neoh, K.G. Synthesis and dynamic random access memory behavior of a functional polyimide. J. Am. Chem. Soc. 2006, 128, 8732–8733.
  • Hahm, S.G.; Choi, S.; Hong, S.H.; Lee, T.J.; Park, S.; Kim, D.M.; Kwon, W.S.; Kim, K.; Kim, O.; Ree, M. Novel rewritable, non-volatile memory devices based on thermally and dimensionally stable polyimide thin films. Adv. Funct. Mater. 2008, 18, 3276–3282.
  • Kuorosawa, T.; Chueh, C.C.; Liu, C.L.; Higashihara, T.; Ueda, M.; Chen, W.C. High performance volatile polymeric memory devices based on novel triphenylamine-based polyimides containing mono- or dual-mediated phenoxy linkages. Macromolecules 2010, 43, 1236–1244.
  • Li, Y.; Xu, H.; Tao, X.; Qian, K.; Fu, S.; Shen, Y.; Ding, S. Synthesis and memory characteristics of highly organo-soluble polyimides bearing a nonplanar twisted biphenyl unit containing aromatic side-chain groups. J. Mater. Chem. 2011, 21, 1810–1821.
  • Yen, H.J.; Liou, G.S. Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. Polym. J. 2016, 48, 117–138.
  • Liaw, D.J.; Wang, K.L.; Huang, Y.C.; Lee, K.R.; Lai, J.Y.; Ha, C.S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974.
  • Shirota, Y. Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 2000, 10, 1–25.
  • Shirota, Y. Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 2005, 15, 75–93.
  • Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107, 953–1010.
  • Thelakkat, M. Star-shaped, dendrimeric and polymeric triarylamines as photoconductors and hole transport materials for electro-optical applications. Macromol. Mater. Eng. 2002, 287, 442–461.
  • Iwan, A.; Sek, D. Polymers with triphenylamine units: Photonic and electroactive materials. Prog. Polym. Sci. 2011, 36, 1277–1325.
  • Liang, M.; Chen, J. Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 2013, 42, 3453–3488.
  • Leung, M.k.; Chou, M.Y.; Su, Y.O.; Chiang, C.L.; Chen, H.L.; Yang, C.F.; Yang, C.C.; Lin, C.C.; Chen, H.T. Diphenylamino group as an effective handle to conjugated donor-acceptor polymers through electropolymerization. Org. Lett. 2003, 5, 839–842.
  • Chou, M.Y.; Leung, M.K.; Su, Y.O.; Chiang, C.L.; Lin, C.C.; Liu, J.H.; Kuo, C.K.; Mou, C.Y. Electropolymerization of starburst triarylamines and their application to electrochromism and electroluminescence. Chem. Mater. 2004, 16, 654–661.
  • Otero, L.; Sereno, L.; Fungo, F.; Liao, Y.L.; Lin, C.Y.; Wong, K.T. Synthesis and properties of a novel electrochromic polymer obtained from the electropolymerization of a 9,9-spirobifluorene-bridged donor-acceptor (D-A) bichromophore system. Chem. Mater. 2006, 18, 3495–3502.
  • Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N.S.; Tsai, Y.M.; Hwu, T.Y.; Wong, K.T. A novel electrochromic polymer synthesized through electropolymerization of a new donor-acceptor bipolar system. Macromolecules 2007, 40, 4456–4463.
  • Wu, T.Z.; Chung, H.H. Applications of tris(4-(thiophen-2-yl)phenyl)amine and dithienylpyrrole-based conjugated copolymers in high-contrast electrochromic devices. Polymers 2016, 8, 206.
  • Liou, G.S.; Hsiao, S.H.; Chen, H.W. Novel high-Tg poly(amine-imide)s bearing pendent N-phenylcarbazole units: Synthesis and photophysical, electrochemical and electrochromic properties. J. Mater. Chem. 2006, 16, 1831–1842.
  • Hsiao, S.H.; Liou, G.S.; Wang, H.M. Highly stable electrochromic polyamides based on N,N-bis(4-aminophenyl)-N′,N′-bis(4-tert-butylphenyl)-1,4-phenylenediamine. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2330–2343.
  • Kung, Y.C.; Hsiao, S.H. Fluorescent and electrochromic polyamides with pyrenylamine chromophore. J. Mater. Chem. 2010, 20, 5481–5492.
  • Kung, Y.C.; Hsiao, S.H. Pyrenylamine-functionalized aromatic polyamides as efficient blue-emitters and multicolored electrochromic materials. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3475–3490.
  • Hsiao, S.H.; Wang, H.M.; Chang, P.C.; Kung, Y.R.; Lee, T.M. Synthesis and electrochromic properties of aromatic polyetherimides based on a triphenylamine-dietheramine monomer. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 2925–2938.
  • Yen, H.J.; Chen, C.J.; Liou, G.S. Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide. Adv. Funct. Mater. 2013, 23, 5307–5316.
  • Wang, H.M.; Hsiao, S.H. Enhancement of redox stability and electrochromic performance of aromatic polyamides by incorporation of (3,6-dimethoxycarbazol-9-yl)triphenylamine units. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 272–286.
  • Hsiao, S.H.; Cheng, S.L. New electroactive and electrochromic aromatic polyamides with ether-linked bis(triphenylamine) units. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 496–510.
  • Hsiao, S.H.; Teng, C.Y.; Kung, Y.R. Synthesis and characterization of novel electrochromic poly(amide-imide)s with N,N′-di(4-methoxyphenyl)-N,N′-diphenyl-p-phenylenediamine units. RSC Adv. 2015, 5, 93591–93606.
  • Hsiao, S.H.; Peng, S.C.; Kung, Y.R.; Leu, C.M.; Lee, T.M. Synthesis and electro-optical properties of aromatic polyamides and polyimides bearing pendant 3,6-dimethoxycarbazole units. Eur. Polym. J. 2015, 73, 50–64.
  • Janoschka, T.; Hager, M.D.; Schubert, U.S. Powering up the future: Radical polymers for battery applications. Adv. Mater. 2012, 24, 6397–6409.
  • Feng, J.K.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries. J. Power Sources 2008, 177, 199–204.
  • Yao, M.; Senoh, H.; Sakai, T.; Kiyobayashi, T. Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries. J. Power Sources 2012, 202, 364–368.
  • Seo, E.T.; Nelson, R.F.; Fritsch, J.M.; Marcoux, L.S.; Leedy, D.W.; Adams, R.N. Anodic oxidation pathways of aromatic amines. Electrochemical and electron paramagnetic resonance studies. J. Am. Chem. Soc. 1966, 88, 3498–3503.
  • Nelson, R.F.; Adams, R.N. Anodic oxidation pathways of substituted triphenylamines. II. Quantitative studies of benzidine formation. J. Am. Chem. Soc. 1968, 90, 3925–3930.
  • Chang, C.W.; Liou, G.S.; Hsiao, S.H. Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties. J. Mater. Chem. 2007, 17, 1007–1015.
  • Hsiao, S.H.; Liou, G.S.; Kung, Y.C.; Yen, H.J. High contrast ratio and rapid switching electrochromic polymeric films based on 4-(dimethylamino)triphenylamine-functionalized aromatic polyamides. Macromolecules 2008, 41, 2800–2808.
  • Hsiao S.H.; Hsiao, Y.H.; Kung, Y.R. Highly redox-stable and electrochromic aramids with morpholinyl-substituted triphenylamine units. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 1289–1298.
  • Oishi, Y.; Takado, H.; Yoneyama, M.; Kakimoto, M.; Imai, Y. Preparation and properties of new polyamides from 4,4′-diaminotriphenylamine and aromatic dicarboxylic acids. J. Polym. Sci. Part A Polym. Chem. 1990, 28, 1763–1769.
  • Imai, Y.; Ishida, M.; Kakimoto, M. Synthesis and properties of new triphenylamine-containing aromatic polyimides based on N,N′-bis(4-aminophenyl)-N,N′-diphenyl-4,4′-biphenyldiamine. High Perform. Polym. 2003, 15, 281–290.
  • Hsiao, S.H.; Wu, C.N. Electrochemical and electrochromic studies of redox-active aromatic polyamides with 3,5-dimethyltriphenylamine units. J. Electroana. Chem. 2016, 776, 139–147.
  • Hsiao, S.H.; Wu, C.N. Synthesis and characterization of redox-active and electrochromic aramids with 3,5-bis(trifluoromethyl)triphenylamine moieties. Polym. Int. 2016, under review.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.