1,415
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Phase Inversion Technique-Based Polyamide Films and Their Applications: A Comprehensive Review

References

  • Pourfayaz, F.; Jafari, S.H.; Mortazavi, Y.; Khodadadi, A.A.; Khonakdar, H.A. Combination of plasma functionalization and phase inversion process techniques for efficient dispersion of MWCNTs in Polyamide 6: Assessment through morphological, electrical, rheological and thermal properties. Polym.-Plast. Technol. Eng. 2015, 54, 632–638.
  • Kashani, T.; Jahanshahi, M.; Rahimpour, A.; Peyravi, M. Nano pore molecularly imprinted polymer membranes for environmental usage: Selective separation of 2,4-dichlorophenoxyacetic acid as a toxic herbicide from water. Polym.-Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1171876
  • Tul Muntha, S.; Kausar, A.; Siddiq, M. Progress on polymer-based membranes in gas separation technology. Polym.-Plast. Technol. Eng. 2015, 55, 1282–1298.
  • Haider, S.; Kausar, A.; Muhammad, B. Research advancement in high performance polyamides and polyamide blends loaded with layered silicate. Polym.-Plast. Technol. Eng. 2016, 55, 1536–1556.
  • Gul, S.; Kausar, A.; Mehmood, M.; Muhammad, B.; Jabeen, S. Progress on epoxy/polyamide and inorganic nanofiller-based hybrids: Introduction, application and future potential. Polym.-Plast. Technol. Eng. 2016. doi:10.1080/03602559.2016.1185628
  • Ghasemi, H.; Mirzadeh, A.; Bates, P.J.; Kamal, M.R. Effect of polyamide 66 on the mechanical and thermal properties of post-industrial waste polyamide 6. Polym.-Plast. Technol. Eng. 2014, 53, 1794–1803.
  • Kim, C.K.; Kim, S.S.; Kim, D.W.; Lim, J.C.; Kim, J.J. Removal of aromatic compounds in the aqueous solution via micellar enhanced ultrafiltration: Part 1. Behavior of nonionic surfactants. J. Membrane Sci. 1998, 147, 13–22.
  • Kugel, A.; He, J.; Samanta, S.; Bahr, J.; Lattimer, J.L.; Fuqua, M.A.; Ulven, C.A.; Chisholm, B.J. Semicrystalline polyamide engineering thermoplastics based on the renewable monomer, 1,9-nonane diamine: Thermal properties and water absorption. Polym.-Plast. Technol. Eng. 2012, 51, 1266–1274.
  • Boom, R.M.; Wienk, I.M.; Boomgaard van den, T.; Smolders, C.A. Microstructures in phase inversion membranes. Part 2. The role of the polymer additive. J. Membrane Sci. 1992, 73, 277–292.
  • Boom, R.M.; Boomgaard van den, T.; Smolders, C.A. Mass transfer and thermodynamics during immersion precipitation for a two-polymer system: Evaluation with the systems PES–PVP–NMP–water. J. Membrane Sci. 1994, 90, 231–249.
  • Saechtling, W.W. In: Hanser ed. International Plastics Handbook for Technologists and Users, 3rd ed., Gardner Publishers: Cincinnati, 1995, p. 256.
  • Li, D.; Wang, H-C.; Lee, A.F. In: Salamone, J.C., ed. Polyamides (impact toughness and toughening), Vol. 1: Polymeric Materials Encyclopedia, CRC Press: New York, 1996, p. 5409.
  • Chernukhina, I.; Gabrielyan, G.A. Thermal stabilization of aliphatic polyamides and fibres based on them—A review. Fibre Chem 1994, 25, 468–473.
  • Brucato, V.; Crippa, G.; Piccarolo, S.; Titomanlio, G. Crystallization of polymer melts under fast cooling. I: Nucleated polyamide 6. Polym. Engineer. Sci. 1991, 31, 1411–1416.
  • Starkova, O.; Yang, J.; Zhang, Z. Application of time–stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos. Sci. Technol. 2007, 67, 2691–2698.
  • Davis, A.P.; Wareham, R.S. A tricyclic polyamide receptor for carbohydrates in organic media. Angew. Chem. Int. Ed. 1998, 37, 2270–2273.
  • Weber, J.; Su, Q.; Antonietti, M.; Thomas, A. Exploring polymers of intrinsic microporosity–microporous, soluble polyamide and polyimide. Macromol. Rapid Commun. 2007, 28, 1871–1876.
  • Lau, W.J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Chen, J.P.; Ismail, A.F. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Water Res. 2015, 80, 306–324.
  • Emadzadeh, D.; Lau, W.J.; Rahbari-Sisakht, M.; Daneshfar, A.; Ghanbari, M.; Mayahi, A.; Matsuura, T.; Ismail, A.F. A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination. Desalination 2015, 368, 106–113.
  • Ghanbari, M.; Emadzadeh, D.; Lau, W.J.; Matsuura, T.; Ismail, A.F. Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination. RSC Adv. 2015, 5, 21268–21276.
  • Bulte, A.M.W.; Folkers, B.; Mulder, M.H.V.; Smolders, C.A. Membranes of semicrystalline aliphatic polyamide nylon 4,6: Formation by diffusion‐induced phase separation. J. Appl. Polym. Sci. 1993, 50, 13–26.
  • Cheng, L.P.; Dwan, A.H.; Gryte, C.C. Membrane formation by isothermal precipitation in polyamide-formic acid-water systems. I. Description of membrane morphology. J. Polym. Sci. B Polym. Phys. 1995, 33, 211–222.
  • Dedecker, K.; Groeninckx, G. Interfacial graft copolymer formation during reactive melt blending of polyamide 6 and styrene-maleic anhydride copolymers. Macromolecules 1999, 32, 2472–2479.
  • Jegal, J.; Min, S.G.; Lee, K.H. Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes. J. Appl. Polym. Sci. 2002, 86, 2781–2787.
  • Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19, 4791–4797.
  • Demirel, A.L.; Meyer, M.; Schlaad, H. Formation of polyamide nanofibers by directional crystallization in aqueous solution. Angew. Chem. Int. Ed. 2007, 46, 8622–8624.
  • Oishi, Y.; Takado, H.; Yoneyama, M.; Kakimoto, M.A.; Imai, Y. Preparation and properties of new aromatic polyamides from 4,4′-diaminotriphenylamine and aromatic dicarboxylic acids. J. Polym. Sci. A Polym. Chem. 1990, 28, 1763–1769.
  • Yang, C.P.; Hsiao, S.H.; Yang, H.W. Synthesis and characterization of aromatic polyamides based on a bis(ether-carboxylic acid) or a dietheramine derived from tert-butylhydroquinone. Macromol. Chem. Phys. 1999, 200, 1528–1534.
  • Liou, G.S.; Hsiao, S.H.; Ishida, M.; Kakimoto, M.; Imai, Y. Synthesis and characterization of novel soluble triphenylamine‐containing aromatic polyamides based on N,N′-bis(4-aminophenyl)-N,N′-diphenyl-1,4-phenylenediamine. J. Polym. Sci. A Polym. Chem. 2001, 40, 2810–2818.
  • Uribe-Arocha, P.; Mehler, C.; Puskas, J.E.; Altstadt, V. Effect of sample thickness on the mechanical properties of injection-molded polyamide-6 and polyamide-6 clay nanocomposites. Polymer 2003, 44, 2441–2446.
  • Cohen, C.; Tanny, G.B.; Prager, S. Diffusion controlled formation of porous structures in ternary polymer systems. J. Polym. Sci. Polym. Phys. Ed. 1979, 17, 477–489.
  • Reuvers, A.J.; van den Berg, J.W.A.; Smolders, C.A. Formation of membranes by means of immersion precipitation. I. A model to describe mass transfer during immersion precipitation. J. Membrane Sci. 1987, 34, 45–65.
  • Radovanovic, P.; Thiel, S.W.; Hwang, S.T. Formation of asymmetric polysulfone membranes by immersion precipitation. Part I. Modelling mass transport during gelation. J. Membrane Sci. 1992, 65, 213–229.
  • Radovanovic, P.; Thiel, S.W.; Hwang, S.T. Formation of asymmetric polysulfone membranes by immersion precipitation. Part II: The effects of casting solution and gelation bath compositions on membrane structure and skin formation. J. Membrane Sci. 1992, 65, 231–246.
  • Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membrane Sci. 1992, 73, 259–275.
  • Chawla, A.S.; Chang, T.M.S. Use of solubility parameters for the preparation of hemodialysis membranes. J. Appl. Polym. Sci. 1975, 19, 1723–1730.
  • Bottino, A.; Capnnelli, G.; Munari, S. Effect of coagulation medium on properties of sulfonated polyvinylidene membranes. J. Appl. Polym. Sci. 1985, 30, 3009–3022.
  • So, M.T.; Eirich, F.R.; Strathmann, H.; Baker, R.W. Preparation of asymmetric Loeb–Sourirajan membranes. J. Polym. Sci. Polym. Lett. Ed. 1973, 11, 201–205.
  • Cabasso, I.; Klein, E.; Smith, J.K. Polysulfone hollow fibers. I. Spinning and properties. J. Appl. Polym. Sci. 1976, 20, 2377–2394.
  • Uragami, T.; Ohsumi, Y.; Sugihara, M. Studies on syntheses and permeabilities of special polymer membranes: 38. Formation mechanism of finger-like cavities in membranes from cellulose nitrate and single solvent. Polymer 1982, 23, 999.
  • Lonsdale, H.K. The growth of membrane technology. J. Membrane Sci. 1982, 10, 81–181.
  • Pusch, W.; Walch, A. Synthetic membranes-preparation, structure and, application. Angew. Chem. Int. Ed. Engl. 1982, 21, 660–685.
  • Hester, J.F.; Banerjee, P.; Mayes, A.M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 1999, 32, 1643–1650.
  • Wijmans, J.G.; Smolders, C.A. Preparation of asymmetric membranes by the phase inversion process. in H.K. Londsdale and M.H. Pinho (Eds.), Synthetic Membranes: Science, Engineering and Applications, Reidel: Dordrecht, The Netherlands, 1986, pp. 39–56.
  • Zeman, L.; Fraser, T. Formation of air-cast cellulose acetate membranes. Part I. Study of macrovoid formation. J. Membrane Sci. 1993, 84, 93–106.
  • Zeman, L.; Fraser, T. Formation of air-cast cellulose acetate membranes. Part II. Kinetics of demixing and microvoid growth. J. Membrane Sci. 1994, 87, 267–279.
  • Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O.J. Synthesis of nylon 6-clay hybrid. Mater. Res. 1993, 8, 1179–1184.
  • Kojima, Y.; Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185–1189.
  • Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Progr. Polym. Sci. 2003, 28, 1539–1641.
  • Wu, S.H.; Wang, F.Y.; Ma, C-C.M.; Chang, W.C.; Kuo, C-T.; Kuan, H-C.; Chen W-J. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Mater. Lett. 2001, 49, 327–333.
  • Fornes, T.D.; Yoon, P.J.; Hunter, D.L.; Keskkula, H.; Paul, D.R. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 2002, 43, 5915–5933.
  • Kashiwagi, T.; Harris Jr., R.H.; Zhang, X.; Briber, R.M.; Cipriano, B.H.; Raghavan, S.R.; Awad, W.H.; Shields, J.R. Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer 2004, 45, 881–891.
  • Strathmann, H. Production of microporous media by phase inversion processes. ACS Symp. Ser. 1985, 269, 165–195.
  • Strathmann H.; Koch, K. The formation mechanism of phase inversion membranes. Desalination 1977, 21, 241–2455.
  • Tsay, C.S.; McHugh, A.J. Mass transfer dynamics of the evaporation step in membrane formation by phase inversion. J. Membrane Sci. 1991, 64, 81–92.
  • Tsay, C.S.; McHugh, A.J. The combined effects of evaporation and quench steps on asymmetric membrane formation by phase inversion. J. Polym. Sci. B Polym. Phys. 1991, 29, 1261–1270.
  • McHugh, A.J.; Tsay, C.S. Dynamics of the phase inversion process. J. Appl. Polym. Sci. 1992, 46, 2011–2021.
  • Zeni, M.; Riveros, R.; de Souza, J.F.; Mello, K.; Meireles, C.; Rodrigues Filho, G. Morphologic analysis of porous polyamide 6,6 membranes prepared by phase inversion. Desalination 2008, 221, 294–297.
  • Li, D.; Chung, T.S.; Ren, J.; Wang, R. Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes. Ind. Eng. Chem. Res. 2004, 43, 1553–1556.
  • Poletto, P.; Duarte, J.; Thürmer, M.B.; Santos, V.D.; Zeni, M. Characterization of polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents. Mater. Res. 2011, 14, 547–551.
  • Serpe, G.; Jarrin, J.; Dawans, F. Morphology-processing relationships in polyethylene–polyamide blends. Polym. Eng. Sci. 1990, 30, 553–565.
  • Hietaoja, P.T.; Holsti-Miettinen, R.M.; Seppälä, J.V.; Ikkala, O.T. The effect of viscosity ratio on the phase inversion of polyamide 66/polypropylene blends. J. Appl. Polym. Sci. 1994, 54, 1613–1623.
  • Kitayama, N.; Keskkula, H.; Paul, D.R. Reactive compatibilization of nylon 6/styrene–acrylonitrile copolymer blends. Part 1. Phase inversion behavior. Polymer 2000, 41 (22), 8041–8052.
  • Charoensirisomboon, P.; Chiba, T.; Inoue, T.; Weber, M. In situ formed copolymers as emulsifier and phase-inversion-aid in reactive polysulfone/polyamide blends. Polymer 2000, 41, 5977–5984.
  • Li, Y.; Shimizu, H. Novel morphologies of poly(phenylene oxide) (PPO)/polyamide 6 (PA6) blend nanocomposites. Polymer 2004, 45, 7381–7388.
  • Lyngaae-Jørgensen, J.; Utracki, L.A. Dual phase continuity in polymer blends. Makromol. Chem. Macromol. Symp. 1991, 48, 189–209.
  • Kudva, R.A.; Keskkula, H.; Paul, D.R. Morphology and mechanical properties of compatibilized nylon 6/polyethylene blends. Polymer 1999, 40, 6003–6021.
  • González‐Montiel, A.; Keskkula, H.; Paul, D.R. Morphology of nylon 6/polypropylene blends compatibilized with maleated polypropylene. J. Polym. Sci. B Polym. Phys. 1995, 33, 1751–1767.
  • Jordhamo, G.M.; Manson, J.A.; Sperling, L.H. Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polym. Eng. Sci. 1986, 26, 517–524.
  • Kitayama, N.; Keskkula, H.; Paul, D.R. Reactive compatibilization of nylon 6/styrene–acrylonitrile copolymer blends. Part 2. Dispersed phase particle size. Polymer 2000, 41, 8053–8060.
  • Kitayama, N.; Keskkula, H.; Paul, D.R. Reactive compatibilization of nylon 6/styrene–acrylonitrile copolymer blends: Part 3. Tensile stress–strain behavior. Polymer 2000, 42, 3751–3759.
  • Garcia, M.; Barsema, J.; Galindo, R.E.; Cangialosi, D.; Garcia-Turiel, J.; van Zyl, W.E.; Verweij, H.; Blank, D.H.. Hybrid organic–inorganic nylon‐6/SiO2 nanocomposites: Transport properties. Polym. Eng. Sci. 2004, 44, 1240–1246.
  • Freger, V. Swelling and morphology of the skin layer of polyamide composite membranes: An atomic force microscopy study. Environ. Sci. Technol. 2004, 38, 3168–3175.
  • Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membrane Sci. 2011, 375, 284–294.
  • Wang, P.; Ma, J.; Shi, F.; Ma, Y.; Wang, Z.; Zhao, X. Behaviors and effects of differing dimensional nanomaterials in water filtration membranes through the classical phase inversion process: A review. Ind. Eng. Chem. Res. 2013, 52, 10355–10363.
  • Jeong, B-H.; Hoek, E.M.V.; Yan, Y. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membrane Sci. 2007, 294, 1–7.
  • Perreault, F.; Tousley, M.E.; Elimelech, M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 2013, 1, 71–76.
  • Cho, Y.H., Han, J.; Han, S.; Guiver, M.D.; Park, H.B. Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis. J. Membrane Sci. 2013, 445, 220–227.
  • Boudreau, B.P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Ac. 1996, 60, 3139–3142.
  • Yan, D.G.; Yang, G.S. Effect of multiwalled carbon nanotubes on the morphology and electrical properties of polyamide 6/polystyrene blends prepared via successive polymerization. J. Appl. Polym. Sci. 2012, 125, E167–E174.
  • Cheng, L.P.; Lin, D.J.; Yang, K.C. Formation of mica-intercalated-nylon 6 nanocomposite membranes by phase inversion method. J. Membrane Sci. 2000, 172, 157–166.
  • Petersen, R.J. Composite reverse osmosis and nanofiltration membranes. J. Membrane Sci. 1993, 83, 81–150.
  • Rodemann, K.; Staude, E. Synthesis and characterization of a±nity membranes made from polysulfone. J. Membrane Sci. 1994, 88, 271–278.
  • Shukla, A.K.; Christensen, P.A.; Hamnett, A.; Hogarth, M.P. A vapour-feed direct-methanol fuel cell with proton-exchange membrane electrolyte. J. Power Sources 1995, 55, 87.
  • Ren, X.; Wilson, M.; Gottesfeld, S.J. High performance direct methanol polymer electrolyte fuel cells. Electrochem. Soc. 1996, 143, L12–L15.
  • Antonucci, P.L.; Arico, A.S.; Cretı, P.; Ramunni, E.; Antonucci, V. Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ion. 1999, 125, 431–437.
  • Schmidt-Rohr, K.; Chen, Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat. Mater 2008, 7, 75–83.
  • Deyrail, Y.; Mighri, F.; Bousmina, M.; Kaliaguine, S. Polyamide/polystyrene blend compatibilisation by montmorillonite nanoclay and its effect on macroporosity of gas diffusion layers for proton exchange membrane fuel cells. Fuel Cells 2007, 7, 447–452.
  • Salgada, A.J.; Coutinho, O.P.; Reis, R.L. Bone tissue engineering: State of the art and future trends. Macromol. Biosci. 2004, 4, 743–765.
  • Koji, H.; Naohide, T.; Takafumi, Y.; Yoshinori, T. Prospects for bone fixation—Development of new cerclage fixation techniques. Mater. Sci. Eng. C. 2001, 17, 19–26.
  • Upadhyay, D.J.; Cui, N-Y.; Anderson, C.A.; Brown, N.M.D. A comparative study of the surface activation of polyamides using an air dielectric barrier discharge. Colloids Surf. A 2004, 248, 47–56.
  • Wang, H.; Li, Y.; Zuo, Y.; Li, J.; Ma, S.; Cheng, L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28, 3338–3348.
  • Huang, D.; Zuo, Y.; Zou, Q.; Wang, Y.; Gao, S.; Wang, X.; Liu, H.; Li, Y. Reinforced nanohydroxyapatite/polyamide 66 scaffolds by chitosan coating for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 51–57.
  • Sedlarik, V.; Otgonzul, O.; Kitano, T.; Gregorova, A.; Hrabalova, M.; Junkar, I.; Cvelbar, U.; Mozetic, M.; Saha, P. Effect of phase arrangement on solid state mechanical and thermal properties of polyamide 6/polylactide based co-polyester blends. J. Macromol. Sci. B. 2012, 51, 982–1001.
  • Wu, D.; Zhang, Y.; Zhang, M.; Zhou, W. Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur. Polym. J. 2008, 44, 2171–2183.
  • Stern, S.A. Polymers for gas separations: The next decade. J. Membrane Sci. 1994, 94, 1–65.
  • Clausi, D.T.; Koros, W.J. Formation of defect-free polyimide hollow fiber membranes for gas separations. J. Membrane Sci. 2000, 167, 79–89.
  • Madaeni, S.S.; Farhadian, A.; Vatanpour, V. Effects of phase inversion and composition of casting solution on morphology and gas permeance of polyethersulfone/polyimide blend membranes. Adv. Polym. Technol. 2012, 31, 298–309.
  • Ekiner, O.M.; Simmons, J.W. Gas separation membranes made from blends of aromatic polyamide, polyimide or polyamide-imide polymers. U.S. Patent 5,248,319, September 28, 1993.
  • Bondar, V.I.; Freeman, B.D.; Pinnau, I. Gas transport properties of poly(ether-b-amide) segmented block copolymers. J. Polym. Sci. B Polym. Phys. 2000, 38, 2051–2062.
  • Espeso, J.; Lozano, A.E.; José, G.; de Abajo, J. Effect of substituents on the permeation properties of polyamide membranes. J. Membrane Sci. 2006, 280, 659–665.
  • Sridhar, S.; Smitha, B.; Mayor, S.; Prathab, B.; Aminabhavi, T.M. Gas permeation properties of polyamide membrane prepared by interfacial polymerization. J. Mater. Sci. 2007, 42, 9392–9401.
  • Lu, X.; Bian, X.; Shi, L. Preparation and characterization of NF composite membrane. J. Membrane Sci. 2002, 210, 3–11.
  • Rao, A.P.; Desai, N.V.; Rangarajan, R. Interfacially synthesized thin film composite RO membranes for seawater desalination. J. Membrane Sci. 1997, 124, 263–272.
  • Trushinski, B.J.; Dickson, J.M.; Smyth, T.; Childs, R.F.; McCarry, B.E. Polysulfonamide thin-film composite reverse osmosis membranes. J. Membrane Sci. 1998, 143, 181–188.
  • Rahimpour, A.; Jahanshahi, M.; Mortazavian, N.; Madaeni, S.S.; Mansourpanah, Y. Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening. Appl. Surf. Sci. 2010, 256, 1657–1663.
  • Kurihara, M.; Fusaoka, Y.; Sasaki, T.; Bairinji, R.; Uemura, T. Development of cross-linked fully aromatic polyamide ultra-thin composite membranes for sea water desalination. Desalination 1994, 96, 133–143.
  • Light, W.G.; Perlman, J.L.; Riedinger, A.B.; Needham, D.F. Desalination of non-chlorinated surface sea water using TFC membrane elements. Desalination 1988, 70, 47–64.
  • Lesan, R.; Tomaschke, J.; Kamiyama, Y.; Shintani, T. A comparison of different classes of spiral-wound membrane elements at low concentration feeds. Ultrapure Water 1990, 7, 18.
  • Singh, P.S.; Joshi, S.V.; Trivedi, J.J.; Devmurari, C.V.; Rao, A.P.; Ghosh, P.K. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J. Membrane Sci. 2006, 278, 19–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.