229
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Investigation into Effects of Membrane Thickness on Electromechanical Properties of Biopolymer Chitosan-Based Electroactive Paper

, , &

References

  • Inganäs, O.; Lundstrüm, I. Carbon nanotube muscles. Science 1999, 284, 1281–1282.
  • Jager, E.W.H.; Smela, E.; Inganäs, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540–1545.
  • Zhang, Q.M.; Li, H.; Poh, M. An all-organic composite actuator material with a high dielectric constant. Nature 2002, 419, 284–287.
  • Ma, M.; Guo, L.; Anderson, D.G. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339, 186–189.
  • Liu, J.; Xia, H.; Lu, L. Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. J. Mater. Chem. 2010, 20, 1506–1510.
  • Mukai, K.; Asaka, K.; Sugino, T. Highly conductive sheets from millimeter-long single-walled carbon nanotubes and ionic liquids: Application to fast-moving, low-voltage electromechanical actuators operable in air. Adv. Mater. 2009, 21, 1582–1585.
  • Jung, J.H.; Jeon, J.H.; Sridhar, V. Electro-active graphene–Nafion actuators. Carbon 2011, 49, 1279–1289.
  • Friend, R.H.; Gymer, R.W.; Holmes, A.B. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128.
  • Xu, X.; Zhou, J.; Nagaraju, D.H. Highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 2015, 25, 3193–3202.
  • Kausar, A.; Rafique, I.; Muhammad, B. Review of applications of polymer/carbon nanotubes and epoxy/CNT composites. Polym. Plast. Technol. 2016, 55, 1167–1191.
  • Gu, Y.Q.; Mu, J.G.; Dai, D.S. Characteristics on drag reduction of bionic jet surface based on earthworm’s back orifice jet. Acta Phys. Sin. 2015, 64, 024701.
  • Lv, S.; Dudek, D.M.; Cao, Y. Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465, 69–73.
  • Chaikof, E.L. Materials science: Muscle mimic. Nature 2010, 465, 44–45.
  • Das, T.K.; Prusty, S. Graphene-based polymer composites and their applications. Polym. Plast. Technol. 2013, 52, 319–331.
  • Shao, L.; Bai, Y.; Huang, X. Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids. Mater. Chem. Phys. 2009, 116, 323–326.
  • Shao, L.; Chang, X.; Zhang, Y. Graphene oxide cross-linked chitosan nanocomposite membrane. Appl. Surf. Sci. 2013, 280, 989–992.
  • Li, M.C.; Wu, Q.; Song, K. Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation. ACS Sustain. Chem. Eng. 2016, 4, 4385–4395.
  • Chang, Y.C.; Chen, D.H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions. J. Coll. Interf. Sci. 2005, 283, 446–451.
  • Humelnicu, D.; Dinu, M.V.; Drăgan, E.S. Adsorption characteristics of and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. J. Hazard. Mater. 2011, 185, 447–455.
  • Jiang, X.; Li, S.; Shao, L. Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ. Sci. 2017, 10, 1339–1344. doi:10.1039/C6EE03566C.
  • Li, S.; Jiang, X.; Yang, Q. Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly (ethylene oxide) membranes for highly-efficient CO2 separation. Chem. Eng. Res. Design 2017, 122, 280–288.
  • Cheng, X.; Ding, S.; Guo, J. In-situ interfacial formation of TiO2/polypyrrole selective layer for improving the separation efficiency towards molecular separation. J. Membr. Sci. 2017, 536, 19–27.
  • Lu, L.; Liu, J.; Hu, Y. Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode. Adv. Mater. 2012, 24, 4317–4321.
  • Lu, L.; Chen, W. Biocompatible composite actuator: A supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Adv. Mater. 2010, 22, 3745–3748.
  • Zhao, G.; Sun, Z.; Wang, J.; Xu, Y.; Muhammad, F. Development of biocompatible polymer actuator consisting of biopolymer chitosan, carbon nanotubes, and an ionic liquid. Polym. Compos. 2015. doi:10.1002/pc.23728.
  • Zhao, G.; Sun, Z.; Wang, J; Xu, Y.; Li, L.; Ge, Y. Electrochemical properties of a highly biocompatible chitosan polymer actuator based on a different nanocarbon-ionic liquid electrode. Polym. Compos. 2015, doi:10.1002/pc.23822.
  • He, Q.; Yu, M.; Yang, X. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid. Smart Mater. Struct. 2015, 24, 065026.
  • Altınkaya, E.; Seki, Y.; Yılmaz, Ö.C. Electromechanical performance of chitosan-based composite electroactive actuators. Compos. Sci. Technol. 2016, 129, 108–115.
  • Sun, Z.; Zhao, G.; Guo, H. Investigation into the actuating properties of ionic polymer metal composites using various electrolytes. Ionics 2015, 21, 1577–1586.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.