392
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Review on Three-Dimensionally Emulated Fiber-Embedded Lactic Acid Polymer Composites: Opportunities in Engineering Sector

&

References

  • Quan, Z.; Wu, A.; Keefe, M.; Qin, X.; Yu, J.; Suhr, J.; Byun, J. H.; Kim, B. S.; Chou, T. W. Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges. Mater. Today 2015, 18(9), 503–512. DOI:10.1016/j.mattod.2015.05.001.
  • Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D Printed Microfluidic Devices: Enablers and Barriers. Lab Chip 2016, 16(11), 1993–2013. DOI:10.1039/c6lc00284f.
  • Low, Z. X.; Chua, Y. T.; Ray, B. M.; Mattia, D.; Metcalfe, I. S.; Patterson, D. A. Perspective on 3D Printing of Separation Membranes and Comparison to Related Unconventional Fabrication Techniques. J. Memb. Sci. 2017, 523, 596–613. DOI:10.1016/j.memsci.2016.10.006.
  • Dimas, L. S.; Bratzel, G. H.; Eylon, I.; Buehler, M. J. Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D Printing, and Testing. Adv. Funct. Mater. 2013, 23(36), 4629–4638. DOI:10.1002/adfm.201300215.
  • Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The Upcoming 3D-Printing Revolution in Microfluidics. Lab Chip 2016, 16(10), 1720–1742. DOI:10.1039/c6lc00163g.
  • Kalsoom, U.; Nesterenko, P. N.; Paull, B. Recent Developments in 3D Printable Composite Materials. RSC Adv. 2016, 6(65), 60355–60371. DOI:10.1039/c6ra11334f.
  • Deekard, C. R. Method and Apparatus for Producing Parts by Selective Sintering Enterprise, C. US Patent no: 4,863,538, 1989.
  • Crump, S. S. Apparatus and Method for Creating Three-Dimensional Objects, U.S. Patent 5121329, 1992.
  • Tymrak, B. M.; Kreiger, M.; Pearce, J. M. Mechanical Properties of Components Fabricated with Open-Source 3-D Printers Under Realistic Environmental Conditions. Mater. Des. 2014, 58, 242–246. DOI:10.1016/j.matdes.2014.02.038.
  • Melnikova, R.; Ehrmann, A.; Finsterbusch, K. 3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) with Different Polymer Materials. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62(1), 12018. DOI:10.1088/1757-899x/62/1/012018.
  • Caulfield, B.; McHugh, P. E.; Lohfeld, S. Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process. J. Mater. Process. Technol. 2007, 182(1–3), 477–488. DOI:10.1016/j.jmatprotec.2006.09.007.
  • Murphy, S. V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotechnol. 2014, 32(8), 773–785. DOI:10.1038/nbt.2958.
  • Rengier, F.; Mehndiratta, A.; Von Tengg-Kobligk, H.; Zechmann, C. M.; Unterhinninghofen, R.; Kauczor, H. U.; Giesel, F. L. 3D Printing Based on Imaging Data: Review of Medical Applications. Int. J. Comput. Assist. Radiol. Surg. 2010, 5(4), 335–341. DOI:10.1007/s11548-010-0476-x.
  • Riedo, F.; Rétornaz, P.; Bergeron, L.; Nyffeler, N.; Mondada, F. Advances in Autonomous Mini Robots, Adv. Auton. Mini Robot. - Proc. 6th AMiRE Symp. AMiRE 2011, 2012, Bielefeld University, Germany; 37–48.
  • Tseng, P.; Murray, C.; Kim, D.; Di Carlo, D. Research Highlights: Printing the Future of Microfabrication. Lab Chip 2014, 14(9), 1491–1495. DOI:10.1039/c4lc90023e.
  • Kim, K.; Zhu, W.; Qu, X.; Aaronson, C.; McCall, W. R.; Chen, S.; Sirbuly, D. J. 3D Optical Printing of Piezoelectric Nanoparticle-Polymer Composite Materials. ACS Nano 2014, 8(10), 9799–9806. DOI:10.1021/nn503268f.
  • Hu, X.; Jing, X. Functionalization of Poly (L-lactide) and Applications of the Functionalized Poly (L-lactide). Green Chem. 12, 291–310.
  • Djonlagic, J.; Nikolic, M. S. Biodegradable Polyesters: Synthesis and Physical Properties, Royal society of chemistry, UK, 2011.
  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly (lactic acid) Modifications. Prog. Polym. Sci. 2010, 35(3), 338–356. DOI:10.1016/j.progpolymsci.2009.12.003.
  • Lim, L.-T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33(8), 820–852. DOI:10.1016/j.progpolymsci.2008.05.004.
  • Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications – A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. DOI:10.1016/j.addr.2016.06.012.
  • Christ, S.; Schnabel, M.; Vorndran, E.; Groll, J.; Gbureck, U. Fiber Reinforcement During 3D Printing. Mater. Lett. 2015, 139, 165–168. DOI:10.1016/j.matlet.2014.10.065.
  • Ticoalu, A.; Aravinthan, T.; Cardona, F. A Review of Current Development in Natural Fiber Composites for Structural and Infrastructure Applications, Southern Reg. Eng. Conf., University of Southern Queensland, Australia, 2010, 1–5.
  • Babu, K. M. Natural Textile Fibres, The textile Institute and Woodhead Publishing Limited, Cambridge UK: Animal and Silk Fibres, Elsevier Ltd, 2014.
  • Sanjay, M. R.; Arpitha, G. R.; Naik, L. L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and its Composites: An Overview. J. Nat. Resour. 2016, 7, 108–114. DOI:10.4236/nr.2016.73011.
  • Campbell, T., Williams, C., Ivanova, O., and Garrett, B. Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington DC, USA, 2011.
  • ASTM-I F2792-12A. Standard Terminology for Additive Manufacturing Technologies, ASTM International, West Conshohocken, PA, USA, 2012.
  • Frketic, J.; Dickens, T.; Ramakrishnan, S. Automated Manufacturing and Processing of Fiber-Reinforced Polymer (FRP) Composites: An Additive Review of Contemporary and Modern Techniques for Advanced Materials Manufacturing. Addit. Manuf. 2017, 14, 69–86. DOI:10.1016/j.addma.2017.01.003.
  • Novikov, P.; Maggs, S.; Sadan, D.; Jin, S.; Nan, C.; Fabrication, O. T. Robotic Positioning Device for Three-Dimensional Printing, CoRR. arXiv Prepr. arXiv 1406.3400, abs/1406.3 2014, 1–14.
  • ORN Laboratories. ORNL Revealed the 3D Printed Shelby Cobra, 2015. http://web.ornl.gov/sci/manufac-turing/media/news/detroit-show/(accessed20/05/2017).
  • Goh, G. D.; Agarwala, S.; Goh, G. L.; Dikshit, V.; Yeong, W. Y. Additive Manufacturing in Unmanned Aerial Vehicles (UAVs): Challenges and Potential. Aerosp. Sci. Technol. 2016, 63, 140–151. DOI:10.1016/j.ast.2016.12.019.
  • Cho, Y. H.; Lee, I. H.; Cho, D. W. Laser Scanning Path Generation Considering Photopolymer Solidification in Micro-Stereolithography. Microsyst. Technol. 2005, 11(2–3), 158–167. DOI:10.1007/s00542-004-0468-2.
  • Matsumura, S.; Hlil, A. R.; Lepiller, C.; Gaudet, J.; Guay, D.; Shi, Z.; Holdcroft, S.; Hay, A. S. Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End-Groups: Novel Branched Poly(Ether-Ketone)s. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 2008, 49(1), 511–512. DOI:10.1002/pola.22690.
  • Barry, J. J. A.; Evseev, A. V.; Markov, M. A.; Upton, C. E.; Scotchford, C. A.; Popov, V. K.; Howdle, S. M. In Vitro Study of Hydroxyapatite-Based Photocurable Polymer Composites Prepared by Laser Stereolithography and Supercritical fluid extraction. Acta Biomater. 2008, 4(6), 1603–1610. DOI:10.1016/j.actbio.2008.05.024.
  • Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A.; Samulski, E. T.; DeSimone, J. M. Continuous Liquid Interface Production of 3D Objects. Science 80, 2015, 347(6228), 1349–1352. DOI:10.1126/science.aaa2397.
  • Bartelds, J. Design and Control of a Modular End-Effector for UAVs in Interaction with a Remote Environment, 2012. http://purl.utwente.nl/essays/62117(accessed20/05/2017).
  • Kaufman, E.; Caldwell, K.; Lee, D.; Lee, T. Design and Development of a Free-Floating Hexrotor UAV for 6-DOF Maneuvers, IEEE Aerosp. Conf. Proc, Big Sky, MT, USA, 2014.
  • Torno, C.; Hintz, C.; Carrillo, C. R. Design and Development of a Semi-Autonomous Fixed-Wing Aircraft with Real-Time Video Feed, 2014 Int. Conf. Unmanned Aircr. Syst. ICUAS 2014 - Conf. Proc,Orlando, FL, USA, 2014; 1021–1028.
  • Shirazi, S. F. S.; Gharehkhani, S.; Mehrali, M.; Yarmand, H.; Metselaar, H. S. C.; Adib Kadri, N.; Osman, N. A. A. A Review on Powder-Based Additive Manufacturing for Tissue Engineering: Selective Laser Sintering and Inkjet 3D Printing. Sci. Technol. Adv. Mater. 2015, 16(3), 33502. DOI:10.1088/1468-6996/16/3/033502.
  • Gu, D. D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. Int. Mater. Rev. 2012, 57(3), 133–164. DOI:10.1179/1743280411y.0000000014.
  • Gibson, I.; Shi, D. P. Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyp. J. 1997, 3(4), 129–136. DOI:10.1108/13552549710191836.
  • Yap, C. Y.; Chua, C. K.; Dong, Z. L.; Liu, Z. H.; Zhang, D. Q.; Loh, L. E.; Sing, S. L. Review of Selective Laser Melting: Materials and Applications. Appl. Phys. Rev. 2015, 041101-1 to 041101-21, 2(4).
  • Guvendiren, M.; Molde, J.; Soares, R. M. D.; Kohn, J. Designing Biomaterials for 3D Printing. ACS Biomater. Sci. Eng. 2016, 2(10), 1679–1693. DOI:10.1021/acsbiomaterials.6b00121.
  • Guessasma, S.; Zhang, W.; Zhu, J.; Belhabib, S.; Nouri, H. Challenges of Additive Manufacturing Technologies from an Optimisation Perspective. Int. J. Simul. Multidiscip. Des. Optim. 2015, 6, 13. DOI:10.1051/smdo/2016001.
  • McGurk, M.; Amis, A.; Potamianos, P.; Goodge, N. M. Rapid prototyping techniques for anatomical modelling in medicine Ann. R. Coll. Surg. 1997, 79, 169–174.
  • Kumar, S.; Kruth, J. P. Composites by Rapid Prototyping Technology. Mater. Des. 2010, 31(2), 850–856. DOI:10.1016/j.matdes.2009.07.045.
  • Derby, B. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40(1), 395–414. DOI:10.1146/annurev-matsci-070909-104502.
  • Thompson, A. B.; Tipton, C. R.; Juel, A.; Hazel, A. L.; Dowling, M. Sequential Deposition of Overlapping Droplets to form a Liquid Line. J. Fluid Mech. 2014, 761, 261–281. DOI:10.1017/jfm.2014.621.
  • Sprittles, J. E.; Shikhmurzaev, Y. D. The Coalescence of Liquid Drops in a Viscous Fluid: Interface Formation Model. J. Fluid Mech. 2014, 751, 480–499. DOI:10.1017/jfm.2014.313.
  • Hulland, D.; Clyne, T. W. An Introduction to Composite Materials; Cambridge University Press, Cambridge UK, 1996.
  • Chou, T. W. Microstructural Design of Fiber Composites; Cambridge University Press, New York USA, 1992.
  • Ali, M.; Pages, E.; Ducom, A.; Fontaine, A.; Guillemot, F. Controlling Laser-Induced jet Formation for Bioprinting Mesenchymal Stem Cells with High Viability and High Resolution. Biofabrication 2014, 6(4), 45001. DOI:10.1088/1758-5082/6/4/045001.
  • Dimas, L. S.; Buehler, M. J. Modeling and Additive Manufacturing of Bio-Inspired Composites With Tunable Fracture Mechanical Properties. Soft Matter 2014, 10(25), 4436–4442. DOI:10.1039/c3sm52890a.
  • Wen, L.; Weaver, J. C.; Thornycroft, P. J. M.; Lauder, G. V. Hydrodynamic Function of Biomimetic Shark Skin: Effect of Denticle Pattern and Spacing. Bioinspir. Biomim. 2015, 10(6), 66010. DOI:10.1088/1748-3190/10/6/066010.
  • Araya, S.; Zolotovsky, K.; Veliz, F.; Song, J.; Reichert, H. S.; Boyce, M.; Ortiz, C. Presented in part at the International Conference on Education and research in Computer Aided Architectural Design in Europe, Delft, Netherlands, 2013, 18–20.
  • Farnsworth, J.; Vaccaro, J. C.; Amitay, M. Aerodynamic Performance Modification of the Stingray UAV at Low Angles of Attack. AIAA J. 2008, 46, 2530–2544. DOI:10.2514/1.35860.
  • Michelson, C.; Reece, S. Update on Flapping Wing Micro Air Vehicle Research-Ongoing Work to Develop a Flapping Wing, Crawling Entomopter, 13th Bristol International RPV/UAV Systems Conference Proceedings, Bristol, England, 1998; 30–31.
  • Easter, S.; Turman, J.; Sheffler, D.; Balazs, M.; Rotner, J. Using Advanced Manufacturing to Produce Unmanned Aerial Vehicles: A Feasibility Study. SPIE Defense, Secur. Sensing. Int. Soc. Opt. Photonics 2013, 8742, 8742041–87420416.
  • Tim. FDM-printed Fixed Wing UAV, 2014. http://www.amrc.co.uk/featuredstudy/printed-uav/ (accessed 20/05/2017).
  • Zhang, T.; Zhou, C.; Su, S. Design and Development of Bio-Inspired Flapping Wing Aerial Vehicles, 2015 Int. Conf. Adv. Robot. Intell. Syst. ARIS 2015, Taipei, Taiwan, 2015, 1–6.
  • Scanlan Jim, A. K. SULSA -Southampton University Laser Sintered Aircraft. http://www.southampton.ac.uk/~decode/index_files/Page804.htm(accessed20/05/2017).
  • Ahmed, N. A.; Page, J. Manufacture of an Unmanned Aerial Vehicle (UAV) for Advanced Project Design Using 3D Printing Technology. Appl. Mech. Mater. 2013, 397–400, 970–980. DOI:10.4028/www.scientific.net/amm.397-400.970.
  • Furst, S. J.; Bunget, G.; Seelecke, S. Design and Fabrication of a Bat-Inspired Flapping Flight Platform Using Shape Memory Alloy Muscles and Joints. Smart Mater. Struct. 2013, 22, 014011. DOI:10.1088/0964-1726/22/1/014011.
  • Richter, C.; Lipson, H. Untethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect. Artif. Life 2011, 17(2), 73–86. DOI:10.1162/artl_a_00020.
  • Bhushan, B.; Caspers, M. An Overview of Additive Manufacturing (3D Printing) for Microfabrication. Microsyst. Technol. 2017, 23(4), 1117–1124. DOI:10.1007/s00542-017-3342-8.
  • Auras, R.; Lim, L. T.; Selke, S. E. Poly(Lactic Acid): Synthesis, Structures, Properties; Wiley, John Wiley & Sons, US, 2010.
  • Kaplan, D. L. Introduction to Biopolymers from Renewable Resources. In: Biopolymers from Renewable Resources, D. L. Kaplan, Springer-Verlag Berlin Heidelberg GmbH and New York US, 1998, pp 1–29.
  • Platt, D. Biodegradable Polymers (Market Report), Rapra: Shawbury, UK, 2006 (Plastics Europe Association, Plastics – the Facts 2012, Brussels, 2012).
  • Hartmann, M. H. High Molecular Weight Polylactic Acid Polymers in Biopolymers from Renewable Resources edited by Kaplan, D. M.; Springer-Verlag Berlin Heidelberg GmbH, New York USA, 1998, 367–411.
  • Griffith, L. G. Polymeric Biomaterials. Acta Mater. 2000, 48(1), 263–277. DOI:10.1016/s1359-6454(99)00299-2.
  • Gruber, P. R.; Hall, E. S.; Kolstad, J. J.; Iwen, M. L.; Benson, R. D.; Borchardt, R. L. Continuous Process for the Manufacture of Lactide and Lactide Polymers. U.S. Patent US6326458 B1, 2001; Vol. 1(12), 26.
  • Gruber, P. R.; Hall, E. S.; Kolstad, J. J.; Iwen, M. L.; Benson, R. D.; Borchardt, R. L. Continuous Process for Manufacture of Laci‘ide Polymers with Purification by Distillation Inventors. US Patent 5,357,035, 1994.
  • Duda, A.; Penczek, S. Polylactide [poly(lactic acid)]: Synthesis, Properties and Applications. Polimery 2003, 48, 16.
  • Södergård, A.; Stolt, M. Properties of Lactic Acid Based Polymers and Their Correlation with Composition. Prog. Polym. Sci. 2002, 27(6), 1123–1163. DOI:10.1016/s0079-6700(02)00012-6.
  • Urayama, H.; Kanamori, T.; Kimura, Y. Microstructure and Thermomechanical Properties of Glassy Polylactides with Different Optical Purity of the Lactate Units. Macromol. Mater. Eng. 2001, 286(11), 705–713. DOI:10.1002/1439-2054(20011101)286:11<705::aid-mame705>3.0.co;2-q.
  • Grijpma, D. W.; Altpeter, H.; Bevis, M. J.; Feijen, J. Improvement of the Mechanical Properties of Poly(D,L-lactide) by Orientation. Polym. Int. 2002, 51(10), 845–851. DOI:10.1002/pi.988.
  • Anderson, K.; Schreck, K.; Hillmyer, M. Toughening Polylactide. Polym. Rev. 2008, 48(1), 85–108. DOI:10.1080/15583720701834216.
  • Auras, R. A.; Singh, S. P.; Singh, J. J. Evaluation of Oriented Poly(Lactide) Polymers vs. Existing PET and Oriented PS for Fresh Food Service Containers. Packag. Technol. Sci. 2005, 18(4), 207–216. DOI:10.1002/pts.692
  • Rowell, R. M.; Han, J. S.; Rowell, J. S. Characterization and Factors Effecting Fiber Properties. In: Frollini, E.; Leao, A. L.; Mattoso, L. H. C and CIP BRASIL, Natural Polymers and Agrofibers Composites, Sãn Carlos, Brazil, 2000.
  • Barkoula, N. M.; Alcock, B.; Cabrera, N. O.; Peijs, T. Fatigue Properties of Highly Oriented Polypropylene Tapes and All-Polypropylene Composites. Polym. Polym. Compos. 2008, 16(2), 101–113.
  • Kotek, R. Recent Advances in Polymer Fibers. Polym. Rev. 2008, 48(2), 221–229. DOI:10.1080/15583720802020038.
  • Gibson, R. F. Principles of Composite Material Mechanics; CRS Press, Taylor and Francis Group, New York USA, 2011.
  • Mallick, P. K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press, Marcel Dekker Inc. New York USA, 2007.
  • Barbero, E. J. Introduction to Composite Materials Design; CRS Press, Taylor & Francis Group, New York USA, 2010.
  • Xia, X.; Liu, W.; Zhou, L.; Hua, Z.; Liu, H.; He, S. Modification of Flax Fiber Surface and Its Compatibilization in Polylactic Acid/Flax Composites. Iran. Polym. J. (English Ed.) 2016, 25(1), 25–35. DOI:10.1007/s13726-015-0395-3.
  • Rana, S.; Fangueiro, R. 1 - Advanced Composites in Aerospace Engineering; Woodhead Publishing, Elsevier, Duxford, UK, 2016; Vol. 2023.
  • Christensen, R. M. Mechanics of Composite Material;Dover Publication, Inc, Mineola, New York, 1979.
  • Cox, H. L. The Elasticity and Strength of Paper and Other Fibrous Materials. Br. J. Appl. Phys. 2002, 3(3), 72–79. DOI:10.1088/0508-3443/3/3/302.
  • Kelly, A.; Macmillan, N. H. Strong Solids; Oxford University Press: Oxford, UK, 1986.
  • Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.-K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation. Sci. Rep. 2016, 6, 23058. DOI:10.1038/srep23058.
  • Fiksel, J. Designing Resilient, Sustainable Systems. Environ. Sci. Technol. 2003, 37(23), 5330–5339. DOI:10.1021/es0344819.
  • Stokke, D. D.; Wu, Q.; Han, G. Introduction to Wood and Natural Fiber Composites, John Wiley & Sons UK, 2013.
  • Alves, C.; Ferrão, P. M. C.; Silva, A. J.; Reis, L. G.; Freitas, M.; Rodrigues, L. B.; Alves, D. E. Ecodesign of Automotive Components Making Use of Natural Jute Fiber Composites. J. Clean. Prod. 2010, 18(4), 313–327. DOI:10.1016/j.jclepro.2009.10.022.
  • Kozłowski, R.; Baraniecki, P.; Barriga-Bedoya, J. Bast Fibres (Flax, Hemp, Jute, Ramie, Kenaf, Abaca). In Biodegradable and Sustainable Fibres, Blackburn, R. S., Eds,; Woodhead Publishing: Cambridge, 2005, Chapter 2.
  • Netravali, A. N. Biodegradable Natural Fiber Composites. In Biodegradable and Sustainable Fibres, Blackburn, R. S., Ed,; Woodhead Publishing: Cambridge, 2005, Chapter 9.
  • Nguyen, T.; Zavarin, E.; Barrall, E. M. Thermal Analysis of Lignocellulosic Materials. Part II. Modified Materials. J. Macromol. Sci. Part C 2007, 21(1), 1–60.
  • Thakur, V. K.; Thakur, M. K. Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydr. Polym. 2014, 109, 102–117. DOI:10.1016/j.carbpol.2014.03.039.
  • Gurunathan, T.; Mohanty, S.; Nayak, S. K. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. DOI:10.1016/j.compositesa.2015.06.007.
  • Chang Hong, R. W. A Review on Natural Fibre-Based Composites-part I: Structure, Processing and Properties of Vegetable Fibres. J. Nat. Fibers 2004, 1(2), 37–41.
  • Koronis, G.; Silva, A.; Fontul, M. Green Composites: A Review of Adequate Materials for Automotive Applications. Compos. Part B Eng. 2013, 44(1), 120–127. DOI:10.1016/j.compositesb.2012.07.004.
  • Richard, K. Recent Advances in Polymer Fibers. Polym. Rev. 2008, 48, 221–229. DOI:10.1080/15583720802020038.
  • Antipov, Y. V.; Kul, A. A.; Pimenov, N. V. Polymer Composite Materials: Polymer Science, Series C, Technologies and Applications. 2016, 58(1), 26–37. DOI:10.1134/s181123821601001x.
  • Kiruthika, A. V. A Review on Physico-Mechanical Properties of Bast Fibre Reinforced Polymer Composites. J. Build. Eng. 2017, 9, 91–99. DOI:10.1016/j.jobe.2016.12.003.
  • Soutis, C. Fibre Reinforced Composites in Aircraft Construction. Prog. Aerosp. Sci. 2005, 41(2), 143–151. DOI:10.1016/j.paerosci.2005.02.004.
  • George, J.; Sreekala, M. S.; Thomas, S. A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites. Polym. Eng. Sci. 2001, 41(9), 1471–1485. DOI:10.1002/pen.10846.
  • Rowell, R. M.; Sanadi, A.; Jacobson, R.; Caulfield, D. Properties of Kenaf/Polypropylene Composites, Terry Sellers, Nancy A. Reichert, Mississippi State University, Mississippi. In: Kenaf Properties, Processing and Products, 1999; 381–392.
  • Hinchcliffe, S. A.; Hess, K. M.; Srubar, W. V. Experimental and Theoretical Investigation of Prestressed Natural Fiber-Reinforced Polylactic Acid (PLA) Composite Materials. Compos. Part B Eng. 2016, 95, 346–354. DOI:10.1016/j.compositesb.2016.03.089.
  • Li, N.; Li, Y.; Liu, S. Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing. J. Mater. Process. Technol. 2016, 238, 218–225. DOI:10.1016/j.jmatprotec.2016.07.025.
  • Nishino, T.; Hirao, K.; Kotera, M.; Nakamae, K.; Inagaki, H. Kenaf Reinforced Biodegradable Composite. Compos. Sci. Technol. 2003, 63(9), 1281–1286. DOI:10.1016/s0266-3538(03)00099-x.
  • Rajesh, G.; Prasad, A. V. R. Tensile Properties of Successive Alkali Treated Short Jute Fiber Reinforced PLA Composites. Procedia Mater. Sci. 2014, 5, 2188–2196.
  • Nurminen, A. Pellavakuitulujitetun Polylaktidin Ruiskuvalu ja Ominaisuudet. Master Thesis, Technical University of Tampere, Tampere, Finland, 2000.
  • (a) Mohanty, A. K.; Misra, M.; Drzal, L. T. Natural Fibers, Biopolymers, and Biocomposites, CRS Press, Taylor and Francis Group, USA, 2005; (b) Riedel, U.; Nickel, J. Natural Fibre-Reinforced Biopolymers as Construction Materials–New Discoveries, Macromolecular Materials and Engineering, 1999, 272(1), 34–40.
  • Nickel, J.; Riedel, U. Structural Materials Made of Renewable Resources (Biocomposites). In Biorelated Polymers: Sustainable Polymer Science and Technology, Chiellini, E.; Gil, H.; Braunegg, G.; Buchert, J.; Gatenholm, P.; van der Zee, M. Eds,; Kluwer Academic, Springer US, 2001, 27–40.
  • Shibata, M.; Ozawa, K.; Teramoto, N.; Yosomiya, R.; Takeishi, H. Biocomposites Made from Short Abaca Fiber and Biodegradable Polyesters. Macromol. Mater. Eng. 2003, 288(1), 35–43. DOI:10.1002/mame.200290031.
  • Yusoff, R. B.; Takagi, H.; Nakagaito, A. N. Tensile and Flexural Properties of Polylactic Acid-Based Hybrid Green Composites Reinforced by Kenaf, Bamboo and Coir Fibers. Ind. Crops Prod. 2016, 94, 562–573. DOI:10.1016/j.indcrop.2016.09.017.
  • Holbery, J.; Houston, D. Natural-Fibre-Reinforced Polymer Composites in Automotive Applications. J. Miner. Met. Mater. Soc. 2006, 58(11), 80–86. DOI:10.1007/s11837-006-0234-2.
  • Suddell, B. C.; Evans, W. J. Natural Fiber Composites in Automotive Applications. In Natural Fibers, Biopolymers, and Biocomposites, Mohanty, A. K.; Misra, M.; Drzal, L. T., Eds.; CRS Press, Taylor and Francis Group, USA, 2005, Chapter 7.
  • Mohanty, A. K.; Manjusri, M.; Lawrence, T. D. Natural Fibers, Biopolymers, and Biocomposites.
  • Komuraiah, A.; Shyam Kumar, N.; Durga Prasad, B. Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech. Compos. Mater. 2014, 50, 3. DOI:10.1007/s11029-014-9422-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.