431
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Recent Progress in Smart Polymers: Behavior, Mechanistic Understanding and Application

, &

References

  • Hoffman, A. S. Stimuli-responsive Polymers-Biomedical Applications and Challenges for Clinical Translation. Adv. Drug. Deliv. Rev. 2013, 65, 10–16. DOI:10.1016/j.addr.2012.11.004
  • Oak, M.; Mandke, R.; Singh, J. Smart Polymers for Peptide and Protein Parenteral Sustained Delivery. Drug Discov. Today Technol. 2012, 9, 131–140.
  • Kost, J.; Langer, R. Responsive Polymeric Delivery Systems. Adv. Drug. Deliv. Rev. 2001, 46, 125–148.
  • Galaev, I. Y.; Mattiasson, B. Smart Polymers and What they could do in Biotechnology and Medicine. Trends Biotechnol. 1999, 17, 335–340. DOI:10.1016/s0167-7799(99)01345-1
  • Kumar, A.; Srivastava, A.; Galaev, I. Y.; Mattiasson, B. Smart Polymers: Physical Forms and Bioengineering Applications. Prog. Polym. Sci. 2007, 32, 1205–1237. DOI:10.1016/j.progpolymsci.2007.05.003
  • Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to pH-Responsive Drug Delivery. Drug Discov. Today. 2002, 7, 569–579. DOI:10.1016/s1359-6446(02)02255-9
  • Schmaljohann, B. Thermo- and pH-Responsive Polymers in Drug Delivery. Adv. Drug. Deliv. Rev. 2006, 58, 1655–1670. DOI:10.1016/j.addr.2006.09.020
  • Roy, I.; Gupta, M. N. Smart Polymeric Materials: Emerging Biochemical Applications. Chem. Biol. 2003, 10, 1161–1171.
  • Bawa, P.; Pillay, V.; Choonara, Y. E.; du Toit, L. C. Stimuli-Responsive Polymers and their Applications in Drug Delivery. Biomed. Mater. 2009, 4, 1–15.
  • Qiu, Y.; Park, K. Environment-Sensitive Hydrogels for Drug Delivery. Adv. Drug. Deliv. Rev. 2001, 53, 321–339.
  • Chen, S.; Singh, J. Controlled Delivery of Testosterone from Smart Polymer Solution Based Systems: In vitro Evaluation. Int. J. Pharm. 2005, 295, 183–190. DOI:10.1016/j.ijpharm.2005.02.023
  • Lalwani, A.; Santani, D. D. Pulsatile Drug Delivery Systems. Indian J. Pharm. Sci. 2007, 69, 489–497.
  • Al-Tahami, K.; Singh, J. Smart Polymer Based Delivery Systems for Peptides and Proteins. Recent Pat. Drug Deliv. Formul. 2007, 1, 65–71. DOI:10.2174/187221107779814113
  • Kopecek, J. Smart and Genetically Engineered Biomaterials and Drug Delivery Systems. Eur. J. Pharm. Sci. 2003, 20, 1–16.
  • Lozinsky, V. I.; Galaev, I. Y.; Plieva, F. M.; Savina, I. N.; Jungvid, H.; Mattiasson, B. Polymeric Cryogels as Promising Materials of Biotechnological Interest. Trends Biotechnol. 2003, 21, 445–451. DOI:10.1016/j.tibtech.2003.08.002
  • Soppimath, K. S.; Aminabhavi, T. M.; Dave, A. M.; Kumbar, S. G.; Rudzinski, W.E. Stimulus-Responsive Smart Hydrogels as Novel Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 957–974. DOI:10.1081/ddc-120006428
  • Issels, R. Hyperthermia Combined with Chemotherapy-Biological Rationale, Clinical Application, and Treatment Results. Onkologie 1999, 22, 374–381. DOI:10.1159/000026986
  • Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Combtype Grafted Hydrogels with Rapid De-Swelling Response to Temperature-Changes. Nature 1995, 374, 240–242.
  • Hoffman, A. S.; Afrassiabi, A. A.; Dong, L .C. Thermally Reversible Hydrogels: II. Delivery and Selective Release of Substances from Aqueous Solution. J. Control. Release. 1986, 4, 213–222. DOI:10.1016/0168-3659(86)90005-2
  • Bae, Y. H.; Okano, T.; Kim, S. W. A New Thermosensitive Hydrogel: Interpenetrating Polymer Networks from N-acryloylpyrrolidine and poly(oxyethylene). Makromol. Chem Rapid Commun. 1988, 9, 185–189.
  • Kokardekar, R. R.; Shah, V. K.; Mody, H. R. PNIPAM Poly(N-isopropylacrylamide): A Thermoresponsive Smart Polymer in Novel Drug Delivery Systems. Internet J. Med. Update 2012, 7, 60–63.
  • Chung, H. J.; Lee, Y.; Park, T. G. Thermosensitive and Biodegradable Hydrogels based on Stereocomplexed Pluronic Multi-Block Copolymers for Controlled Protein Delivery. J. Control. Release 2008, 127, 22–30. DOI:10.1016/j.jconrel.2007.12.008
  • Wasan, K.; Subramanian, R.; Kwong, M.; Goldberg, I.; Wright, T.; Johnston, T. Poloxamer 407-Mediated Alterations in the Activities of Enzymes Regulating Lipid Metabolism in Rats. J. Pharm. Sci. 2003, 6, 189–197.
  • Laxmi, R.; Singh, F. S. Smart Polymers for Controlled Delivery of Proteins and Peptides: A Review of Patents. Recent Pat. Drug Deliv. Formul. 2009, 3, 40–48. DOI:10.2174/187221109787158300
  • Grainger, S. T.; El-Sayed, M. E. H. Stimuli-Sensitive Particles for Drug Delivery. Biologically-Responsive Hybrid Biomaterials: A Reference for Material Scientists and Bioengineers; World Scientific Publishing Co. Pvt. Ltd: USA, 2010.
  • Shaikh, R. P.; Pillay, V.; Choonara, Y. E., du Toit, L. C.; Ndesendo, V. M.; Bawa, P.; Cooppan, S. A Review of Multi-Responsive Membranous Systems for Rate-Modulated Drug Delivery. AAPS Pharm Sci. Tech. 2010, 2, 441–459. DOI:10.1208/s12249-010-9403-2
  • Gil, E. S.; Hudson, S. M. Stimuli-Responsive Polymers and their Bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. DOI:10.1016/j.progpolymsci.2004.08.003
  • De la Rica, R.; Aili, D.; Stevens, M. M. Enzyme-Responsive Nanoparticles for Drug Release and Diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978. DOI:10.1016/j.addr.2012.01.002
  • Andresen, T. L.; Jensen, S. S.; Jorgensen, K. Advanced Strategies in Liposomal Cancer Therapy: Problems and Prospects of Active and Tumor Specific Drug Release. Prog. Lipid Res. 2005, 44, 68–97. DOI:10.1016/j.plipres.2004.12.001
  • Minelli, C.; Lowe, S. B.; Stevens, M. M. Engineering Nanocomposite Materials for Cancer Therapy. Small 2010, 6, 2336–2357. DOI:10.1002/smll.201000523
  • Shidhaye, S.; Badshah, F.; Prabhu, N.; Parikh, P. Smart Polymers: A Smart Approach to Drug Delivery. World J. Pharm. Res. 2014, 3, 159–172.
  • Aguilar, M. R.; Elvira, C.; Gallardo, A.; Vazquez, B.; Roman, J. S. Smart Polymers and Their Applications as Biomaterials. In Topics in Tissue Engineering; Ashammakhi, N., Reis, R., 2007; Vol. 3, pp 2–27.
  • Banerjee, S.; Chaurasia, G.; Ghosh, A. Smart Polymers: Around the Cosmos. Asian J. Pharm. Clin. Res. 2010, 3, 135–141.
  • Kranz, H.; Bodmeier, R. A Novel In Situ Forming Drug Delivery System for Controlled Parenteral Drug Delivery. Int. J. Pharm. 2007, 332, 107–114. DOI:10.1016/j.ijpharm.2006.09.033
  • Dong, W. Y.; Korber, M.; Lopez Esguerra, V.; Bodmeier, R. Stability of Poly(D, L-lactide-co-glycolide) and Leuprolide Acetate in In-Situ Forming Drug Delivery Systems. J. Control Release 2006, 115, 158–167. DOI:10.1016/j.jconrel.2006.07.013
  • Ravivarapu, H. B.; Moyer, K. L.; Dunn, R. L. Sustained Suppression of Pituitary-Gonadal Axis with an Injectable, In Situ Forming Implant of Leuprolide Acetate. J. Pharm. Sci. 2000, 89, 732–741. DOI:10.1002/(sici)1520-6017(200006)89:6<732::aid-jps4>3.0.co;2-d
  • Chen, S.; Singh, J. In Vitro Release of Levonorgestrel from Phase Sensitive and Thermo-Sensitive Smart Polymer Delivery Systems. Pharm. Dev. Technol. 2005, 10, 319–325. DOI:10.1081/pdt-200054479
  • Singh, S.; Singh, J. Controlled Release of a Model Protein Lysozyme from Phase Sensitive Smart Polymer Systems. Int. J. Pharm. 2004, 271, 189–196. DOI:10.1016/j.ijpharm.2003.11.010
  • Chu, F. M.; Jayson, M.; Dineen, M. K.; Perez, R.; Harkaway, R.; Tyler, R. C. A Clinical Study of 22.5 mg La-2550: A New Subcutaneous Depot Delivery System for Leuprolide Acetate for the Treatment of Prostate Cancer. J. Urol. 2002, 168, 1199–1203. DOI:10.1097/00005392-200209000-00088
  • Higuchi, T. Mechanism of Sustained-Action Medication. J. Pharm. Sci. 1963, 52, 1145–1149. DOI:10.1002/jps.2600521210
  • Royals, M. A.; Fujita, S. M.; Yewey, G. L.; Rodriguez, J.; Schultheiss, P. C.; Dunn, R. L. Biocompatibility of a Biodegradable In Situ Forming Implant System in Rhesus Monkeys. J. Biomed. Mater. Res. 1999, 45, 231–239. DOI:10.1002/(sici)1097-4636(19990605)45:3<231::aid-jbm11>3.0.co;2-h
  • Bromberg, L. Intelligent Polyelectrolytes and Gels in Oral Drug Delivery. Curr. Pharm. Biotechnol. 2003, 4, 339–349. DOI:10.2174/1389201033489702
  • Serres, A.; Baudys, M.; Kim, S.W. Temperature and pH-sensitive Polymers for Human Calcitonin Delivery. Pharm. Res. 1996, 13, 196–201.
  • Vakkalanka, S. K.; Brazel, C. S.; Peppas, N. A. Temperature and pH Sensitive Polymers for Modulated Delivery of Streptokinase. J. Biomater. Sci. Polym. 1996, 8, 119–129. DOI:10.1163/156856296x00192
  • Suzuki, Y.; Tanihara, M.; Nishimura, Y.; Suzuki, K.; Kakimaru, Y.; Shimizu, Y. A Novel Wound Dressing with an Antibiotic Delivery System Stimulated by Microbial Infection. ASAIO J. 1997, 43, 854–857.
  • Tanihara, M.; Suzuki, Y.; Nishimura, Y.; Suzuki, K.; Kakimaru, Y. Thrombin-Sensitive Peptide Linkers for Biological Signal-Responsive Drug Release Systems. Peptides. 1998, 19, 421–425. DOI:10.1016/s0196-9781(97)00420-8
  • Suzuki, Y.; Tanihara, M.; Nishimura, Y.; Suzuki, K.; Kakimaru, Y.; Shimizu, Y. A New Drug Delivery System with Controlled Release of Antibiotic only in the Presence of Infection. J. Biomed. Mater. Res. 1998, 42, 112–116. DOI:10.1002/(sici)1097-4636(199810)42:1<112::aid-jbm14>3.3.co;2-8
  • Tanihara, M.; Suzuki, Y.; Nishimura, Y.; Suzuki, K.; Kakimaru, Y.; Fukunishi, Y. A Novel Microbial Infection-Responsive Drug Delivery System. J. Pharm. Sci. 1999, 88, 510–514. DOI:10.1021/js980418j
  • Chhabra, S.; Sachdeva, V.; Singh, S. Influence of End Groups on In Vitro Release and Biological Activity of Lysozyme from a Phase-Sensitive Smart Polymer-Based In Situ Gel Forming Controlled Release Drug Delivery System. Int. J. Pharm. 2007, 342, 72–77. DOI:10.1016/j.ijpharm.2007.04.034
  • Leung, M. F.; Zhu, J.; Harris, F. W.; Li, P. New Route to Smart Core-Shell Polymeric Microgels: Synthesis and Properties. Macromol. Rapid Commun. 2004, 25, 1819–1823. DOI:10.1002/marc.200400362
  • Flint, N. J.; Gardebrecht, S.; Swanson, L. Fluorescence Investigations of “Smart” Microgel Systems. J. Fluoresc. 1998, 8, 343–353.
  • George, M.; Abraham, T. E. pH Sensitive Alginate–Guar Gum Hydrogel for the Controlled Delivery of Protein Drugs. Int. J. Pharm. 2007, 335, 123–129. DOI:10.1016/j.ijpharm.2006.11.009
  • Shixing, W.; Yang, Z.; Wen, G.; Bingjun, D. Preparation and Characterization of Smart Polymer Brush-Modified Magnetic Nanoparticles for Biomedicine Application. J. Nanopart. Res. 2009, 11, 909–916. DOI:10.1007/s11051-008-9481-1
  • Barichello, J. M.; Morishita, M.; Takayama, K.; Nagai, T. Absorption of Insulin from Pluronic F-127 Gels Following Subcutaneous Administration in Rats. Int. J. Pharm. 1999, 184, 189–198. DOI:10.1016/s0378-5173(99)00119-2
  • Zhang, K.; Wu, X. Y. Temperature and pH-Responsive Polymeric Composite Membranes for Controlled Delivery of Proteins and Peptides. Biomaterials 2004, 22, 5281–5291. DOI:10.1016/j.biomaterials.2003.12.032
  • Breuniga, M.; Bauera, S.; Goepferich, A. Polymers and Nanoparticles: Intelligent Tools for Intracellular Targeting. Eur. J. Pharm. Biopharm. 2008, 68, 112–128. DOI:10.1016/j.ejpb.2007.06.010
  • Gulzar, A. K.; Gai, S.; Yang, P.; Li, C.; Ansari, M. B.; Lin, J. Stimuli-Responsive Drug Delivery Application of Polymer and Silica in Biomedicine. J. Mater. Chem. B 2015, 3, 8599–8622. DOI:10.1039/c5tb00757g
  • Wike-Hooley, J. L.; Haveman, J.; Reinhold, J. S. The Relevance of Tumour pH to the Treatment of Malignant Disease. Radiother. Oncol. 1984, 2, 343–366. DOI:10.1016/s0167-8140(84)80077-8
  • Christofk, H. R.; Vander Heiden, M. G.; Harris, M. H.; Ramanathan, A.; Gerszten, R. E.; Wei, R.; Fleming, M. D.; Schreiber, S. L.; Cantley, L. C. The M2 Splice Isoform of Pyruvate Kinase is Important for Cancer Metabolism and Tumour Growth. Nature 2008, 452, 230–233. DOI:10.1038/nature06734
  • Xie, T. Recent Advances in Polymer Shape Memory. Polymer 2011, 52, 4985–5000. DOI:10.1016/j.polymer.2011.08.003
  • Liu, C., Qin, H., Mather, P. Review of Progress in Shape-Memory Polymers. J. Mater. Chem. 2007, 17, 1543. DOI:10.1039/b615954k
  • Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of Shape-Memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers. Proc. Natl. Acad. Sci. USA 2006, 103, 3540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.