243
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Development, In Vitro and In Vivo Evaluation of Hydrogel Based System of Carboxymethyl Arabinoxylan for Controlled Delivery of Rabeprazole Sodium

ORCID Icon, &

References

  • Katsura, T.; Inui, K. Intestinal Absorption of Drugs Mediated by Drug Transporters: Mechanisms and Regulation. Drug Metab. Pharm. 2003, 18, 1–15. DOI: 10.2133/dmpk.18.1.
  • Williams, M. P.; Pounder, R. E. Review Article: The Pharmacology of Rabeprazole. Alimen. Pharmacol. Ther. 1999, 13, 3–10. DOI: 10.1046/j.1365-2036.1999.00019.x.
  • Narayan, B.; Jonathan, G.; Miqin, Z. Chitosan-Based Hydrogels for Controlled, Localized Drug Delivery. Adv. Drug Delivery Rev. 2010, 62, 83–99. DOI: 10.1016/j.addr.2009.07.019.
  • Furuta, T.; Shirai, N.; Sugimoto, M.; Nakamura, A.; Hishida, A.; Ishizaki, T. Influence of CYP2C19 Pharmacogenetic Polymorphism on Proton Pump Inhibitor-Based Therapies. Drug Metab. Pharm. 2005, 20, 153–167. DOI: 10.2133/dmpk.20.153.
  • Swan, S. K.; Hoyumpa, A. M.; Merritt, G. J. Review Article: The Pharmacokinetics of Rabeprazole in Health and Disease. Alimen. Pharmacol. Ther. 1999, 13, 11–17. DOI: 10.1046/j.1365-2036.1999.00020.x.
  • Ndidi, C. N.; Nelson, A. O.; Okezie, I. A. Naturapolyceutics: The Science of Utilizing Natural Polymers for Drug Delivery. Polymers 2014, 6, 1312–1332. DOI: 10.3390/polym6051312.
  • Fischer, M. H.; Yu, N. G.; Ralph, G. R.; Anderson, J. L.; Marlett, J. A. The Gel Forming Polysaccharide of Psyllium Husk (Plantago ovata Forsk). Carbohydr. Res. 2004, 339, 2009–2017. DOI: 10.1016/j.carres.2004.05.023.
  • Saghir, S.; Saeed, M. I.; Ajaz, M. H.; Andreas, K.; Thomas, H. Structure Characterization and Carboxymethylation of Arabinoxylan Isolated from Ispaghula (Plantago ovata) Seed Husk. Carbohydr. Polym. 2008, 74, 309–317. DOI: 10.1016/j.carbpol.2008.02.019.
  • Meenakshi, B.; Munish, A. Psyllium Arabinoxylan: Carboxymethylation, Characterization and Evaluation for Nanoparticulate Drug Delivery. Int. J. Bio. Macromol. 2015, 72, 495–501. DOI: 10.1016/j.ijbiomac.2014.08.051.
  • Petzold, K.; Schwikal, K.; Heinze, T. Carboxymethyl Xylan Synthesis and Detailed Structure Characterization. Carbohydr. Polym. 2006a, 64, 292–298. DOI: 10.1016/j.carbpol.2005.11.037.
  • Petzold, K.; Schwikal, K.; Günther, W.; Heinze, T. Carboxymethyl Xylan Control of Properties by Synthesis. Macromol. Symp. 2006b, 232, 27–36. DOI: 10.1002/masy.200551404.
  • Bromberg, L.; Temchenko, M.; Alakhov, V.; Hatton, T. A. Bioadhesive Properties and Rheology of Polyether-Modified Poly (Acrylic Acid) Hydrogels. Int. J. Pharm. 2004, 282, 45–60. DOI: 10.1016/j.ijpharm.2004.05.030.
  • Devine, D. M.; Higginbotham, C. L. Synthesis and Characterization of Chemically Crosslinked N-Vinyl Pyrrolidinone (NVP) based Hydrogels. Eur. Polym. J. 2005, 41, 1272–1279. DOI: 10.1016/j.eurpolymj.2004.12.022.
  • Wenbo, W.; Jiang, W.; Yuru, K.; Aiqin, W. Synthesis, Swelling and Responsive Properties of a New Composite Hydrogel based on Hydroxyethyl Cellulose and Medicinal Stone. Composites 2011, 42, 809–818. DOI: 10.1016/j.compositesb.2011.01.018.
  • Bumsang, K.; Kristen, L. F.; Peppas, N. A. Dynamic Swelling Behavior of pH-Sensitive Anionic Hydrogels Used for Protein Delivery. J. Appl. Polym. Sci. 2003, 89, 1606–1613. DOI: 10.1002/app.12337.
  • Oprea, A. M.; Ciolacu, D.; Neamtu, A.; Mungiu, O. C.; Stoica, B.; Vasile, C. Cellulose/Chondroitin Sulfate Hydrogels: Synthesis, Drug Loading/Release Properties and Biocompatibility. Cellul. Chem. Tech. 2010, 44, 369–378.
  • Kuldeep, H. R.; Nath, L. K. Formulation, Evaluation and Optimization of Controlled Release Hydrogel Microspheres for Colon Targeted Drug Delivery. J. Pharm. Sci. Res. 2012, 4, 1739–1747.
  • Hiremath, J. N.; Vishalakshi, B. Effect of Crosslinking on Swelling Behaviour of IPN Hydrogels of Guar Gum & Polyacrylamide. Der Pharm. Chem. 2012, 4, 946–955.
  • Ranjha, N. M.; Asadullah, M.; Abdullah, A. B.; Nuzhat, T.; Saeed, A.; Hassan, A. Preparation and Characterization of Isosorbide Mononitrate Hydrogels Obtained by Free-Radical Polymerization for Site-Specific Delivery. Trop. J. Pharm. Res. 2014, 13, 1979–1985. DOI: 10.4314/tjpr.v13i12.4.
  • Lim, Y. M.; Lee, Y. M. Preparation and Characterization of pH-Sensitive Poly (ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by γ-ray Irradiation. Macromol. Res. 2005, 13, 327–333. DOI: 10.1007/bf03218461.
  • Guirguis, O. W.; Moselhey, M. T. H. Thermal and Structural Studies of Poly (vinyl alcohol) and Hydroxypropyl Cellulose Blends. Nat. Sci. 2012, 4, 57–67. DOI: 10.4236/ns.2012.41009.
  • Siddhi, G.; Thomas, J. W.; Arvind, S. Evolution of PVA gels Prepared without Crosslinking Agents as a cell Adhesive Surface. J. Mater. Sci. 2011, 22, 1763–1772. DOI: 10.1007/s10856-011-4343-2.
  • Rakesh, N. T.; Prashant, K. P. Rabeprazole Sodium Delayed-Release Multiparticulates: Effect of enteric coating layers on product performance. J. Adv. Pharm. Tech. Res., 2011, 2, 184–191. DOI: 10.4103/2231-4040.85539.
  • Suvakanta, D.; Padala, N. M.; Lilakanta, N.; Prasanta, C. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Drug Res. 2010, 67, 217–223.
  • Amitava, G.; Udaya, K. N.; Prasant, R.; Tanusree, N.; Partha, R. Preparation, Evaluation and in vitro- in vivo Correlation (IVIVC) study of Lamivudine Loaded Microspheres. Res. J. Pharm. Tech. 2008, 1, 353–356.
  • Hosseinzadeh, H. Controlled Release of Diclofenac Sodium from pH-Responsive Carrageenan-g-poly(acrylic acid) Superabsorbent Hydrogel. J. Chem. Sci. 2010, 122, 651–659. DOI: 10.1007/s12039-010-0100-1.
  • Pourjavadi, A.; Mahdavinia, G. R. Superabsorbency: pH Sensitivity and Swelling Kinetics of Partially Hydrolyzed Chitosan-g-poly (Acrylamide) Hydrogels. Turk. J. Chem. 2006, 30, 595–608.
  • Maryam, A.; Hosein, A.; Abolfazle, B.; Aliakbar, S.; Mehrdad, B. Experimental Investigation and Modeling of the Anti-Cancer Drug Delivery from Poly(N-Isopropylacrylamide-co Acrylic Acid) Copolymeric Hydrogels. Int. J. Biosci. 2014, 5, 183–191.
  • Malana, A. M.; Rubab, Z. The Release Behavior and Kinetic Evaluation of Tramadol HCl from Chemically Cross Linked Terpolymeric Hydrogels. DARU J. Pharm. Sci. 2013, 21, 1–10. DOI: 10.1186/2008-2231-21-10.
  • Amin, M. C. I. M.; Naveed, A.; Manisha P.; Chong, J. X. Stimuli-Responsive Bacterial Cellulose-g-Poly (acrylic acid-co-acrylamide) Hydrogels for Oral Controlled Release Drug Delivery. Drug Dev. Ind. Pharm. 2014, 40, 1340–1349. DOI: 10.3109/03639045.2013.819882.
  • Nihar, S.; Patel, K. R.. Formulation and Development of Hydrogel for Poly Acrylamide-Co-Acrylic Acid. J. Pharm. Sci. Biosci. Res. 2014, 4, 114–120.
  • Thakur, A.; Wanchoo, R. K.; Singh, P. Hydrogels of Poly (acrylamide-co-acrylic acid): In-Vitro Study on Release of Gentamicin Sulfate. Chem. Biochem. Eng. Q 2011, 25, 471–482.
  • Kaith, B. S.; Kiran, K. Preparation of Psyllium Mucilage and Acrylic Acid Based Hydrogels and their Application in Selective Absorption of Water from Different Oil/Water Emulsions. Iran Polym. J. 2007, 16, 529–538.
  • Singha, A. S.; Ashvinder, K. R. 2011. Kinetics of Graft Copolymerization of Acrylic Acid onto Cannabis indica Fibre. Iran Polym. J. 2011, 20, 913–929.
  • Hatakeyama, T.; Nakamura, K.. Studies on Heat Capacity of Cellulose and Lignin by Differential Scanning Calorimetry. Polymers 1982, 23, 1801–1804.
  • Zhe, C.; Xiaoyan, L.; Xuegang, L. Study on the Synthesis of Thermoplastic Carboxymethyl Cellulose with Graft Copolymerization. Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM) International Conference on, 2011, pp 1224–1227.
  • Chandra, B. A.; Prabhakar, M. N.; Suresh, B. A.; Mallikarjuna, B.; Subha, M. C. S.; Chowdoji, R. K. Development and Characterization of Semi-IPN Silver Nanocomposite Hydrogels for Antibacterial Applications. Int. J. Carbohydr. Chem. 2013, 2013, 1–8. DOI: 10.1155/2013/243695.
  • Kazimiera, H. B. Evaluation of Microcrystalline Chitosan Properties as a DRUG CARRIER. Part II The Influence of Microcrystalline Chitosan on ReleaseRate of Ketoprofen. Acta Pol. Pharm. 2001, 58,185–194.
  • Donini, C.; Robinson, D. N.; Colombo, P.; Giordano, F.; Peppas, N. A. Preparation of Poly(methacrylic acid – g-poly(ethylene glycol)) Nanospheres from Methacrylic Monomers for Pharmaceutical Applications. Int. J. Pharm. 2002, 245, 83–91. DOI: 10.1016/s0378-5173(02)00335-6.
  • Mudassir, J.; & Ranjha, N. M. Dynamic and Equilibrium Swelling Studies: Crosslinked pH Sensitive Methyl Methacrylate-co-itaconic Acid (MMA-co-IA) Hydrogels. J. Polym. Res. 2008, 15, 195–203. DOI: 10.1007/s10965-007-9159-x.
  • Chen, K. S.; Ku, Y. A.; Lin, H. R.; Yan, T. R.; Sheu, D. C.; Chen, T. M.; Lin, F. H. Preparation and Characterization of pH Sensitive Poly(N-vinyl-2-pyrrolidone/itaconic acid) Copolymer Hydrogels. Mater. Chem. Phys. 2005, 91, 484–489. DOI: 10.1016/j.matchemphys.2004.12.037.
  • Sohail, K.; Khan, I. U.; Shahzad, Y.; Hussain, T.; Ranjha, N. M. pH-Sensitive Polyvinylpyrrolidone-acrylic Acid Hydrogels: Impact of Material Parameters on Swelling and Drug Release. Braz. J. Pharm. Sci. 2014, 50, 173–184. DOI: 10.1590/s1984-82502011000100018.
  • Singh, B.; Sharma, V.; Kumar, S. Synthesis of Smart Hydrogels by Radiation Polymerisation for use as Slow Drug Delivery Devices. Can. J. Chem. Eng. 2011, 89, 1596–1605. DOI: 10.1002/cjce.20456.
  • Zhang, C. H.; Bing, X. Z.; Yue, H.; Ying, W.; Xi, Y. K.; Bo, J. Z.; Xuan, Z.; Qiang, Z. A Novel Domperidone Hydrogel: Preparation, Characterization, Pharmacokinetic, and Pharmacodynamic Properties. J. Drug Delivery 2011, 2011, 1–9. DOI: 10.1155/2011/841054.
  • Bhavesh, D. K.; Radheshyam, R. P.; Shalini, R.; Rahul, J.; Yogesh, K. B.; Heta, J.; Nisarginee, C.; Navin, R. S.; Hari, C. B. pH Responsive MMT/Acrylamide Super Composite Hydrogel: Characterization, Anticancer Drug Reservoir and Controlled Release Property. Biochem. Biophys. 2013, 1, 43–60.
  • Oprea, A. M.; Manuela, T. N.; Lenuta, P.; Marcel, I. P.; Catalina, E. L.; Cornelia, V. Evaluation of the Controlled Release Ability of Theophylline from Xanthan/Chondroitin Sulfate Hydrogels. J. Biomater. Nanobiotech. 2013, 4, 123–131. DOI: 10.4236/jbnb.2013.42017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.