374
Views
10
CrossRef citations to date
0
Altmetric
Articles

Structure, Performance and Crystallization Behavior of Poly (Lactic Acid)/Humic Acid Amide Composites

, &
Pages 1858-1872 | Received 14 Nov 2017, Accepted 27 Jan 2018, Published online: 08 Feb 2018

References

  • Garlotta, D. A Literature Review of Poly(lactic acid). J. Polym. Environ. 2001, 9, 63–84.
  • Chen, C. C.; Chueh, J. Y.; Tseng, H. Preparation and Characterization of Biodegradable PLA Polymeric Blends. Biomaterials 2003, 24, 1167–73. DOI: 10.1016/s0142-9612(02)00466-0.
  • Zhong, J.; Li, H.; Yu, J. Effects of Natural Fiber Surface Modification on Mechanical Properties of Poly(lactic acid) (PLA)/Sweet Sorghum Fiber Composites. Polym.-Plast. Technol. Eng. 2011, 50, 1583–1589. DOI: 10.1080/03602559.2011.557817.
  • Vargas, L. F.; Welt, B. A.; Teixeira, A. Biodegradation of Treated Polylactic Acid (PLA) Under Anaerobic Conditions. T. ASABE. 2009, 52, 1025–1030. DOI: 10.13031/2013.27371.
  • Buzarovska, A. PLA Nanocomposites with Functionalized TiO2 Nanoparticles. Polym.-Plast. Technol. Eng. 2013, 52, 280–286. DOI: 10.1080/03602559.2012.751411.
  • Wang, Y.; Tong, B.; Hou, S.; Li, M.; Shen, C. Transcrystallization Behavior at the Poly(lactic acid)/Sisal Fibre Biocomposite Interface. Compos. Part. A-Appl. S. 2011, 42, 66–74. DOI: 10.1016/j.compositesa.2010.10.006.
  • Teo, Z. X.; Chow, W. S. Impact, Thermal, and Morphological Properties of Poly(lactic acid)/Poly(methyl methacrylate)/Halloysite Nanotube Nanocomposites. Polym.-Plast. Technol. Eng. 2016, 55, 1474–1480. DOI: 10.1080/03602559.2015.1132464.
  • Vink, E. T. H.; Rábago, K. R.; Glassner, D. A. Applications of Life Cycle Assessment to NatureWorks™ Polylactide (PLA) Production. Polym. Degrad. Stabil. 2003, 80, 403–419. DOI: 10.1016/s0141-3910(02)00372-5.
  • Gonzalez, M. F.; Ruseckaite, R. A.; Cuadrado, T. R. Structural Changes of Polylactic-acid (PLA) Microspheres Under Hydrolytic Degradation. J. Appl. Polym. Sci. 2015, 71, 1223–1230. DOI: 10.1002/(sici)1097-4628(19990222)71:8<1223::aid-app2>3.0.co;2-i.
  • Wu, C. P.; Wang, C. C.; Chen, C. Y. Enhancing the PLA Crystallization Rate and Mechanical Properties by Melt Blending with Poly(styrene-butadiene-styrene) Copolymer. Polym.-Plast. Technol. Eng. 2015, 54, 1043–1050. DOI: 10.1080/03602559.2014.974274.
  • Phuphuak, Y.; Miao, Y.; Zinck, P. Balancing Crystalline and Amorphous Domains in PLA Through Star-structured Polylactides with Dual Plasticizer/Nucleating Agent Functionality. Polymer 2013, 54, 7058–7070. DOI: 10.1016/j.polymer.2013.10.006.
  • Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) Crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677.
  • Romberg, R. W.; Werness, P. G.; Riggs, B. L. Inhibition of Hydroxyapatite-Crystal Growth by Bone-Specific and Other Calcium-Binding Proteins. Biochemistry 1986, 25, 1176–1180. DOI: 10.1021/bi00353a035.
  • Wei, X. F.; Bao, R. Y.; Cao, Z. Q. Greatly Accelerated Crystallization of Poly(lactic acid): Cooperative Effect of Stereocomplex Crystallites and Polyethylene Glycol. Colloid. Polym. Sci. 2014, 292, 163–172. DOI: 10.1007/s00396-013-3067-x.
  • Yamane, H.; Sasai, K. Effect of the Addition of Poly(d-lactic acid) on the Thermal Property of Poly(l-lactic acid). Polymer 2003, 44, 2569–2575. DOI: 10.1016/s0032-3861(03)00092-2.
  • Pei, A.; Zhou, Q.; Berglund, L. A. Functionalized Cellulose Nanocrystals as Biobased Nucleation Agents in Poly(l-lactide) (PLLA)-Crystallization and Mechanical Property Effects. Compos. Sci. Technol. 2010, 70, 815–821. DOI: 10.1016/j.compscitech.2010.01.018.
  • Li, H.; Huneault, M. A. Effect of Nucleation and Plasticization on the Crystallization of Poly(lactic acid). Polymer 2007, 48, 6855–6866.
  • Xu, H.; Tang, S.; Chen, J. Unique Crystallization Behavior of Poly(l-lactic acid) Nucleated by Stereocomplex with Different Fine Structure. Polym.-Plast. Technol. Eng. 2013, 52, 690–698. DOI: 10.1080/03602559.2012.762667.
  • Di, Y.; Iannace, S.; Maio, E. D. Poly(lactic acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing. J. Polym. Sci. Pol. Phys. 2005, 43, 689–698. DOI: 10.1002/polb.20366.
  • Suksut, B.; Deeprasertkul, C. Effect of Nucleating Agents on Physical Properties of Poly(lactic acid) and Its Blend with Natural Rubber. J. Polym. Environ. 2011, 19, 288–296. DOI: 10.1007/s10924-010-0278-9.
  • Li, J.; Chen, D.; Gui, B.; Gu, M.; Ren, J. Crystallization Morphology and Crystallization Kinetics of Poly(lactic acid): Effect of N-Aminophthalimide as Nucleating Agent. Polym. Bull. 2011, 67, 775–791. DOI: 10.1007/s00289-010-0419-2.
  • Nam, J. Y.; Okamoto, M.; Okamoto, H. Morphology and Crystallization Kinetics in a Mixture of Low-Molecular Weight Aliphatic Amide and Polylactide. Polymer 2006, 47, 1340–1347. DOI: 10.1016/j.polymer.2005.12.066.
  • Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of Hydrogen-Bonded Blend of Polylactide with Biodegradable Hyperbranched Poly(ester amide). Macromolecules 2007, 40, 6257–6267.
  • Chiou, C. T.; Kile, D. E.; Rutherford, D. W. Sorption of Selected Organic Compounds from Water to a Peat Soil and Its Humic-Acid and Humin Fractions: Potential Sources of the Sorption Nonlinearity. Environ. Sci. Technol. 2000, 34, 1254–1258. DOI: 10.1021/es990261c.
  • Islam, K. M. S.; Schuhmacher, A.; Gropp, J. M. Humic Acid Substances in Animal Agriculture. Pak. J. Nutr. 2005, 4, 126–134. DOI: 10.3923/pjn.2005.126.134.
  • Erhayem, M.; Sohn, M. Effect of Humic Acid Source on Humic Acid Adsorption onto Titanium Dioxide Nanoparticles. Sci. Total. Environ. 2014, 470, 92–98. DOI: 10.1016/j.scitotenv.2013.09.063.
  • Chefetz, B.; Salloum, M. J.; Deshmukh, A. P. Structural Components of Humic Acids as Determined by Chemical Modifications and Carbon-13 NMR, Pyrolysis-, and Thermochemolysis-Gas Chromatography/Mass Spectrometry. Soil. Sci. Soc. Am. J. 2002, 66, 1159–1171. DOI: 10.2136/sssaj2002.1159.
  • Shi, C.; Zhen, W. Synthesis, Characterization of Fulvic Acid-Poly(methyl-methacrylate) Graft Copolymers Based on Surface-Initiated Atom Transfer Radical Polymerization and Its Effect on Performance of Poly(lactic acid). Polym.-Plast. Technol. Eng. 2017, 56, 1801–1812. DOI: 10.1080/03602559.2017.1289408.
  • Stevenson, F. J. Organic Matter Reactions Involving Herbicides in Soil. J. Environ. Qual. 1972, 1, 333–343. DOI: 10.2134/jeq1972.00472425000100040001x.
  • Meng, Y.; Yao, C.; Xue, S. Application of Fourier Transform Infrared (FT-IR) Spectroscopy in Determination of Microalgal Compositions. Bioresource. Technol. 2014, 151, 347–354. DOI: 10.1016/j.biortech.2013.10.064.
  • Sivam, A. S.; Sun-Waterhouse, D.; Perera, C. O. Application of FT-IR and Raman Spectroscopy for the Study of Biopolymers in Breads Fortified with Fibre and Polyphenols. Food. Res. Int. 2013, 50, 574–585. DOI: 10.1016/j.foodres.2011.03.039.
  • Hartono, T.; Wang, S.; Ma, Q. Layer Structured Graphite Oxide as a Novel Adsorbent for Humic Acid Removal from Aqueous Solution. J. Colloid. Interf. Sci. 2009, 333, 114–119. DOI: 10.1016/j.jcis.2009.02.005.
  • Kim, Y. J.; Park, C. R. Analysis of Problematic Complexing Behavior of Ferric Chloride with N, N-Dimethylformamide Using Combined Techniques of FT-IR, XPS, and TGA/DTG. Inorg. Chem. 2002, 41, 6211- 6216.
  • Fan, X.; Guo, L.; Liu, T. Preparation and Mechanical Properties of PLGA/β-TCP Composites. Polym.-Plast. Technol. Eng. 2013, 52, 621–625. DOI: 10.1080/03602559.2012.762661.
  • Yan, S.; Yin, J.; Yang, Y. Surface-Grafted Silica Linked with l-Lactic Acid Oligomer: A Novel Nanofiller to Improve the Performance of Biodegradable Poly(l-lactide). Polymer 2007, 48, 1688–1694. DOI: 10.1016/j.polymer.2007.01.037.
  • Dash, B. N.; Rana, A. K.; Mishra, S. C.; Mishra, H. K.; Nayak, S. K.; Tripathy, S. S. Novel Low-Cost Jute–Polyester Composite. II. SEM Observation of the Fractured Surfaces. Polym. Plast. Technol. Eng. 2000, 39(2), 333–350. DOI: 10.1081/ppt-100100033.
  • Nagarajan, V.; Zhang, K.; Misra, M. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature. ACS. Appl. Mater. Inter. 2015, 7, 11203. DOI: 10.1021/acsami.5b01145.
  • Tudorachi, N.; Lipsa, R.; Mustata, F. R. Thermal Degradation of Carboxymethyl Starch-g-Poly(lactic acid) Copolymer by TG-FTIR-MS Analysis. Ind. Eng. Chem. Res. 2012, 51, 15537–15545. DOI: 10.1021/ie300625c.
  • Lin, Z.; Chen, C.; Guan, Z. Polypropylene/Poly(lactic acid) Semibiocomposites Modified with Two Kinds of Intumescent Flame Retardants. Polym.-Plast. Technol. Eng. 2012, 51, 991–997.
  • Liu, J.; Zhang, S.; Zhang, L.; Bai, Y. Crystallization Behavior of Long-Chain Branching Polylactide. Ind. Eng. Chem. Res. 2012, 51, 13670–13679. DOI: 10.1021/ie301567n.
  • Wang, H.; Qiu, Z. Crystallization Kinetics and Morphology of Biodegradable Poly(l-lactic acid)/Graphene Oxide Nanocomposites: Influences of Graphene Oxide Loading and Crystallization Temperature. Thermochim. Acta 2012, 527, 40–46. DOI: 10.1016/j.tca.2011.10.004.
  • Zhen, W.; Wang, W. Structure, Properties and Rheological Behavior of Thermoplastic Poly(lacticacid)/Quaternary Fluvic Acid-Intercalated Saponite Nano-Composites. Polym. Bull. 2016, 73, 1015–1035.
  • Zhang, N.; Wang, Q.; Ren, J. Preparation and Properties of Biodegradable Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blend with Glycidyl Methacrylate as Reactive Processing Agent. J. Mater. Sci. 2009, 44, 250–256. DOI: 10.1007/s10853-008-3049-4.
  • Kumar, S. R.; Maiti, S. N.; Ghosh, A. K. Crystallization, Morphological, and Mechanical Response of Poly(lactic acid)/Lignin-Based Biodegradable Composites. Polym.-Plast. Technol. Eng. 2016, 55, 475–485. DOI: 10.1080/03602559.2015.1098688.
  • Liu, T. Y.; Lin, W. C.; Yang, M. C.; Chen, S. Y. Miscibility, Thermal Characterization and Crystallization of Poly(l-lactide) and Poly(tetramethylene adipate-co-terephthalate) Blend Membranes. Polymer 2005, 46, 12586–12594. DOI: 10.1016/j.polymer.2005.10.100.
  • Li, C.; Dou, Q.; Bai, Z. Non-Isothermal Crystallization Behaviors and Spherulitic Morphology of Poly(lactic acid) Nucleated by a Novel Nucleating Agent. J. Therm. Anal. Calorim. 2015, 122, 407–417. DOI: 10.1002/pat.3463.
  • Papageorgiou, G. Z.; Achilias, D. S.; Nanaki, S. PLA Nanocomposites: Effect of Filler Type on Non-isothermal Crystallization. Thermochim. Acta. 2010, 511, 129–139.
  • Lin, S. W.; Cheng, Y. Y. Miscibility, Thermal and Mechanical Properties of Melt-Mixed Poly(lactic acid)/Poly(trimethylene terephthalate) Blends. Polym.-Plast. Technol. Eng. 2010, 49, 1001–1009.
  • Shi, N.; Dou, Q. Non-isothermal Cold Crystallization Kinetics of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate)/Treated Calcium Carbonate Composites. J. Therm. Anal. Calorim. 2015, 119, 635–642. DOI: 10.1007/s10973-014-4162-z.
  • He, D.; Wang, Y.; Shao, C.; Zheng, G.; Li, Q.; Shen, C. Effect of Phthalimide as an Efficient Nucleating Agent on the Crystallization Kinetics of Poly(lactic acid). Polym. Test. 2013, 32, 1088–1093.
  • Zhang, R.; Wang, Y.; Wang, K. Crystallization of Poly(lactic acid) Accelerated by Cyclodextrin Complex as Nucleating Agent. Polym. Bull. 2013, 70, 195–206. DOI: 10.1007/s00289-012-0814-y.
  • Wang, Y.; He, D.; Wang, X.; Cao, W.; Li, Q.; Shen, C. Crystallization of Poly(lactic acid) Enhanced by Phthalhydrazide as Nucleating Agent. Polym. Bull. 2013, 70, 2911–2922. DOI: 10.1007/s00289-013-0996-y.
  • Wu, D.; Wu, L.; Wu, L. Nonisothermal Cold Crystallization Behavior and Kinetics of Polylactide/Clay Nanocomposites. J. Polym. Sci. Pol. Phys. 2007, 45, 1100–1113. DOI: 10.1002/polb.21154.
  • Li, M.; Hu, D.; Wang, Y.; Shen, C. Nonisothermal Crystallization Kinetics of Poly(lactic acid) Formulations Comprising Talc with Poly(ethylene glycol). Polym Eng Sci 2010, 50, 2298–2305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.