372
Views
4
CrossRef citations to date
0
Altmetric
Articles

Preparation and Characterization of Hybrid Chitosan/PEO–Silica Membrane Doped with Phosphotungstic Acid for PEM Fuel Cell Application

&

References

  • Sopian, K.; Ramli, W.; Daud, W. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells. Renew. Energy. 2006, 31, 719–727. DOI: 10.1016/j.renene.2005.09.003.
  • Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells Fundamentals and Applications. Fuel Cell. 2001, 1, 5–39. DOI: 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G.
  • Uma, T.;. Proton Conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications. World Acad. Sci. Eng. Technol. 2010, 4, 11–27.
  • Herring, A. M.;. Inorganic-Polymer Composite Membranes for Proton Exchange Membrane for Fuel Cells. J. Macromol. Sci., Polym. Rev. 2006, 46, 245–296. DOI: 10.1080/00222340600796322.
  • Uma, T.; Nogami, M. Structural and Transport Properties of Mixed Phosphotungstic Acid/Phosphomolybdic Acid/SiO2 Glass Membranes for H2/O2 Fuel Cells. Chem. Mater 2007, 19, 3604–3610. DOI: 10.1021/cm070567f.
  • Kourasi, M.; Wills, R. G. A.; Shah, A. A.; Walsh, F. C. Heteropoly Acids for Fuel Cell Applications. Electrochim. Acta. 2014, 127, 454–466. DOI: 10.1016/j.electacta.2014.02.006.
  • Uma, T.;. Structural Study on inorganic/Organic Hybrid Composte Membranes. J. Mater. Chem. 2011, 21, 456–465. DOI: 10.1039/C0JM02504F.
  • Janik, M. J.; Davis, R. J.; Neurock, M. A. A First Principles Analysis of the Location and Affinity of Protons in the Secondary Structure of Phosphotungstic Acid. J. Phys. Chem.: B. 2004, 108, 12292–12300. DOI: 10.1021/jp049843t.
  • Tatsumisago, M.; Honjo, M.; Sakai, Y.; Minami, T. Proton-Conducting Silica-Gel Films Doped with a Variety of Electrolytes. Solid State Ionics. 1994, 74, 105–108. DOI: 10.1016/0167-2738(94)90198-8.
  • Sachdeva, S.; Turner, S. A.; Horan, J. L.; Herring, A. M. The Use of Heteropoly Acids in Proton Exchange Fuel Cells. Struct. Bond. 2011, 141, 115–168.
  • Mafirad, S.; Hosseini, S. N. Chitosan Based Nano Composite Membranes with Improved Properties: Effect of Cellulose Acetate Blending and TiO2 Nano Particle Incorporation. Polym. Compos. 2017. DOI: 10.1002/pc.24539.
  • Bai, H.; Zhang, H.; He, Y.; Liu, J.; Zhang, B.; Wang, J. Enhanced Proton Conduction of Chitosan Membrane Enabled by Halloysite Nanotubes Bearing Sulfonate Polyelectrolyte Brushes. J. Membr. Sci. 2014, 454, 220–232. DOI: 10.1016/j.memsci.2013.12.005.
  • Liu, Y.; Wang, J.; Zhang, H.; Ma, C.; Liu, J.; Cao, S.; Zhang, X. Enhancement of Proton Conductivity of Chitosan Membrane Enabled by Sulfonated Graphene Oxide under Both Hydrate and Anhydrous Conditions. J. Power Source. 2014, 269, 808–911. DOI: 10.1016/j.jpowsour.2014.07.075.
  • Purwanto, M.; Atmaja, L.; Mohamed, M. A.; Salleh, M. T.; Jaafar, J.; Ismail, A. F.; Santoso, M.; Widiastuti, M. Bio Polymer Based Electrolyte Membranes from Chitosan Incorporated with Montmorillonite Crosslinked GPTMS for Direct Methanol Fuel Cells. RSC Adv. 2016, 6, 2314–2322. DOI: 10.1039/C5RA22420A.
  • Nancy, A. C.; Suthanthiraraj, S. A. Preparation and Characterization of a New PEO-PPG Blend Polymer Electrolyte System. Ionics. 2016, 22, 2399–2408. DOI: 10.1007/s11581-016-1767-1.
  • Bostan, M. S.; Mutlu, E. C.; Kazak, H.; Keskin, S. S.; Oner, E. T.; Eroglu, M. S. Polymer-Matrix Nanocomposite Membranes for Water Treatment. J. Membr. Science. 2015, 479, 256–275. DOI: 10.1016/j.memsci.2014.11.019.
  • Yin, J.; Deng, B. Advanced Nano Composite Membranes for Fuel Cell Applications: A Comprehensive Review. Biofuel Res. J. 2016, 3, 496–513. DOI: 10.18331/BRJ2016.3.4.4.
  • Pourzare, K.; Mansourpanah, Y.; Farhadi, S. Novel High Performance Nano Composite Proton Exchange Membranes Based on Poly (Ether Sulfone). Renew. Energ. 2010, 35, 226–231. DOI: 10.1016/j.renene.2009.05.026.
  • Sadrabadi, M. M. H.; Dashtimoghadam, E.; Ghaffarian, S. R.; Sadrabadi, M. H. H.; Heidari, M.; Moaddel, H. Novel High Performance Nano Composite Proton Exchange Membranes Based on Poly (Ether Sulfone). Renew. Energ. 2010, 35, 226–231. DOI: 10.1016/j.renene.2009.05.026.
  • Tsai, H. S.; Wang, Y. Z.; Lin, J. J.; Lien, W. F. Preparation and Properties of Sulfopropyl Chitosan Derivatives with Various Sulfonation Degree. J. Appl. Polym. Sci. 2010, 116, 1686–1693.
  • Kumar, G. G.; Senthilarasu, S.; Lee, O. N.; Kim, P.; Nahm, K. S.; Lee, S. H. Synthesis and Characterization of Aligned SiO2 Nanosphere Arrays: Spray Method. Synth Met. 2008, 158, 684–687. DOI: 10.1016/j.synthmet.2008.04.031.
  • Park, Y. S.; Yamazakiy, Y. Low Water/Methanol Permeable Nafion/CHP Organic–Inorganic Composite Membrane with High Crystallinity. Eur. Polym. 2006, 42, 375–387. DOI: 10.1016/j.eurpolymj.2005.07.018.
  • Kumar, G. G.; Nahm, K. S.; Elizabeth, R. N. Electro Chemical Properties of Porous PVdF-HFP Membranes Prepared with Different Nonsolvents. J. Memb. Sci. 2008, 325, 117–124. DOI: 10.1016/j.memsci.2008.07.015.
  • Wang, S. F.; Shen, L.; Tong, Y. S.; Chen, L.; Phang, I. Y.; Lim, P. Q. Biopolymer Chitosan/Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2005, 90, 123–131. DOI: 10.1016/j.polymdegradstab.2005.03.001.
  • Rajendran, S.; Mahalingam, T.; Kannan, R. Experimental Investigations on PAN–PEO Hybrid Polymer Electrolytes. Solid State Ionics. 2000, 130, 143–148. DOI: 10.1016/S0167-2738(00)00283-6.
  • Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. R. Structural and Complex Ac Impedance Studies on Proton Conducting Polymer Electrolytes Based on Chitosan/H+-MMT. IJRSET. 2016, 3, 41–47.
  • Tohidian, M.; Ghaffarian, S. R.; Shakeri, S. M.; Dashtimoghadam, E.; Sadrabadi, M. M. H. Organically Modified Montmorillonite and Chitosan-Phosphotungstic Acid Complex Nanocomposites as High Performance Membranes for Fuel Cell Applications. J. Solid State Electrochem. 2013, 17, 2123–2137. DOI: 10.1007/s10008-013-2074-7.
  • Tseng, C. Y.; Ye, Y. S.; Kao, K. Y.; Joseph, J.; Shen, W. C.; Rick, J.; Hwang, B. J. Interpenetrating Network-Forming Sulfonated Poly (Vinyl Alcohol) Proton Exchange Membranes for Direct Methanol Fuel Cell Applications. J. Hydrogen Energy. 2011, 36, 11936–11945. DOI: 10.1016/j.ijhydene.2011.06.025.
  • Wu, T. M.; Wu, C. Y. Biodegradable Poly (Lactic Acid)/Chitosan-Modified Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2006, 91, 2198–2204. DOI: 10.1016/j.polymdegradstab.2006.01.004.
  • Song, R.; Xue, R.; He, L. H.; Liu, Y.; Xiao, Q. Chinese the Structure and Properties of Chitosan/Polyethylene Glycol/Silica Ternary Hybrid Organic-Inorganic Films. Chinese J Polym. Sci. 2008, 26, 621–630. DOI: 10.1142/S0256767908003357.
  • Sivasankaran, A.; Sangeetha, D. Influence of Sulfonated SiO2 in Sulfonated Polyether Ether Ketone Nanocomposite Membrane in Microbial Fuel Cell. Fuel. 2015, 159, 689–696. DOI: 10.1016/j.fuel.2015.07.002.
  • Martinova, L.; Lubasova, D. Electrospun Chitosan Based Nanofibers. RJTA. 2008, 12, 72–79.
  • Pandey, G. P.; Hashmi, S. A.; Agrawal, R. C. Hot-Press Synthesized Polyethylene Oxide Based Proton Conducting Nanocomposite Polymer Electrolyte Dispersed with SiO2 Nanoparticles. Solid State Ionics. 2008, 179, 543–549. DOI: 10.1016/j.ssi.2008.04.006.
  • Uma, T.; Parronda, J.; Rambabu, B. Alternative Proton-Conducting Electrolytes and Their Electrochemical Performance. J. Solid State Electrochem. 2012, 16, 2151–2158. DOI: 10.1007/s10008-012-1642-6.
  • Beattie, P. D.; Orfino, F. P.; Basura, V. I.; Zychowska, K.; Ding, J.; Chuy, C.; Schmeisser, J.; Holdcroft, S. Ionic Conductivity of Proton Exchange Membranes. J. Electroanal. Chem. 2001, 503, 45–56. DOI: 10.1016/S0022-0728(01)00355-2.
  • Kalaiselvimary, J.; Kumar, K. S.; Rajendran, S.; Sowmya, G.; Prabhu, M. R. Effect of Surface Modified Montmorillonite Incorporated Biopolymer Membranes for PEM Fuel Cell Applications. Polym. Comp. 2017. DOI: 10.1002/pc24.655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.