519
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Engineered Smart Textiles and Janus Microparticles for Diverse Functional Industrial Applications

& ORCID Icon

References

  • Wang, Z.; Yang, X.; Cheng, Z.; Liu, Y.; Shao, L.; Jiang, L. Simply Realizing “Water Diode” Janus Membranes for Multifunctional Smart Applications. Mater. Horizons 2017, 4(4), 701–708. DOI:10.1039/C7MH00216E.
  • Pang, X.; Wan, C.; Wang, M.; Lin, Z. Strictly Biphasic Soft and Hard Janus Structures: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed. 2014, 53(22), 5524–5538. DOI:10.1002/anie.201309352.
  • Casagrande, C.; Veysse, M. C.R Acad Sci. (Paris) 1988, 30611.
  • Granick, S.; Jiang, S.; Chen, Q. Janus Particles. Phys. Today 2009, 62, 68–69. DOI:10.1063/1.3177238.
  • Ghoussoub, Y. E.; Schlenoff, J. B. Janus Nanofilms. Langmuir 2016, 32(15), 3623–3629. DOI:10.1021/acs.langmuir.6b00672.
  • Walther, A.; Müller, A. H. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013, 113(7), 5194–5261. DOI:10.1021/cr300089t.
  • Fujii, S.; Kappl, M.; Butt, H. J.; Sugimoto, T.; Nakamura, Y. Soft Janus Colloidal Crystal Film. Angewandte Chemie. 2012, 124(39), 9947–9951. DOI:10.1002/ange.201204358.
  • Wang, Z.; Wang, Y.; Liu, G. Rapid and Efficient Separation of Oil from Oil‐in‐Water Emulsions Using a Janus Cotton Fabric. Angew. Chem. Int. Ed. 2016, 55(4), 1291–1294. DOI:10.1002/anie.201507451.
  • Zhu, Q.; Pan, Q. Mussel-Inspired Direct Immobilization of Nanoparticles and Application for Oil–Water Separation. ACS Nano 2014, 8(2), 1402–1409. DOI:10.1021/nn4052277.
  • Mishra, P.; Balasubramanian, K. Nanostructured Microporous Polymer Composite Imprinted with Superhydrophobic Camphor Soot, for Emphatic Oil–Water Separation. RSC Adv. 2014, 4(95), 53291–53296. DOI:10.1039/C4RA07410F.
  • Jiang, Y.; Hou, J.; Xu, J.; Shan, B. Switchable Oil/Water Separation with Efficient and Robust Janus Nanofiber Membranes. Carbon 2017, 115, 477–485. DOI:10.1016/j.carbon.2017.01.053.
  • Young, T. An Essay on the Cohesion of Fluids. Adv Mater Interfaces Royal Society London 1805, 95, 65–87. DOI:10.1098/rstl.1805.0005.
  • Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28(8), 988–994. DOI:10.1021/ie50320a024.
  • Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Society 1944, 40, 546–551. DOI:10.1039/tf9444000546.
  • Yang, T.; Wei, L.; Jing, L.; Liang, J.; Zhang, X.; Tang, M.; Monteiro, M. J.; Chen, Y. I.; Wang, Y.; Gu, S., et al. Dumbbell‐Shaped Bi‐Component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie. 2017. DOI:10.1002/ange.201701640.
  • Zhang, H.; Wang, Q.; Jiang, B.; Liang, F.; Yang, Z. Coral-Like Janus Porous Spheres. ACS Appl. Mater. Interfaces. 2016, 8(48), 33250–33255. DOI:10.1021/acsami.6b12472.
  • Kai, S.; Ashaduzzaman, M.; Uemura, S.; Kunitake, M. Composite Polymer Materials Consisting of Nanofilms Formed by Click Reaction between Polymers at an Oil–Water Interface. Chem. Lett. 2011, 40(3), 270–272. DOI:10.1246/cl.2011.270.
  • Tang, L.; Yang, S.; Liang, F.; Wang, Q.; Qu, X.; Yang, Z. Janus Nanocage toward Platelet Delivery. ACS Appl. Mater. Interfaces 2016, 8(19), 12056–12062. DOI:10.1021/acsami.6b03208.
  • Ruhland, T. M.; GröSchel, A. H.; Ballard, N.; Skelhon, T. S.; Walther, A.; MüLler, A. H.; Bon, S. A. Influence of Janus Particle Shape on Their Interfacial Behavior at Liquid–Liquid Interfaces. Langmuir 2013, 29(5), 1388–1394. DOI:10.1021/la3048642.
  • Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, Properties and Applications of Janus Particles. Chem. Soc. Rev. 2012, 41(11), 4356–4378. DOI:10.1039/c2cs35032g.
  • Geng, Y.; Zhang, P.; Wang, Q.; Liu, Y.; Pan, K. Novel PAN/PVP Janus Ultrafine Fiber Membrane and Its Application for Biphasic Drug Release. J. Mater. Chem. B 2017, 5, 5390–5396. DOI:10.1039/C7TB00929A.
  • Walther, A.; Müller, A. H. Janus Particles. Soft Matter 2008, 4(4), 663–668. DOI:10.1039/b718131k.
  • Yang, H. C.; Hou, J.; Chen, V.; Xu, Z. K. Janus Membranes: Exploring Duality for Advanced Separation. Angew. Chem. Int. Ed. 2016, 55(43), 13398–13407. DOI:10.1002/anie.201601589.
  • Sahoo, B. N.; Kandasubramanian, B. Recent Progress in Fabrication and Characterisation of Hierarchical Biomimetic Superhydrophobic Structures. RSC Adv. 2014, 4(42), 22053–22093. DOI:10.1039/c4ra00506f.
  • Sahoo, B. N.; Kandasubramanian, B. Photoluminescent Carbon Soot Particles Derived from Controlled Combustion of Camphor for Superhydrophobic Applications. RSC Adv. 2014, 4(22), 11331–11342. DOI:10.1039/c3ra46193a.
  • Sahoo, B. N.; Kandasubramanian, B.; Sucheendran, M. Thermally Triggered Transition of Superhydrophobic Characteristics of Micro-And Nanotextured Multiscale Rough Surfaces. J. Phys. Chem. C 2015, 119(25), 14201–14213.
  • Sahoo, B. N.; Kandasubramanian, B. Facile Synthesis of Nano Cauliflower and Nano Broccoli like Hierarchical Superhydrophobic Composite Coating Using PVDF/carbon Soot Particles via Gelation Technique. J. Colloid. Interface. Sci. 2014, 436, 111–121. DOI:10.1016/j.jcis.2014.08.031.
  • Sahoo, B. N.; Sabarish, B.; Kandasubramanian, B. Controlled Fabrication of Non-Fluoro Polymer Composite Film with Hierarchically Nano Structured Fibers. Prog. Org. Coatings 2014, 77(4), 904–907. DOI:10.1016/j.porgcoat.2013.12.015.
  • Sahoo, B. N.; Kandasubramanian, B. A Nanocellular PVDF–Graphite Water-Repellent Composite Coating. RSC Adv. 2015, 5(9), 6743–6751. DOI:10.1039/C4RA06704E.
  • Patankar, N. A. Transition between Superhydrophobic States on Rough Surfaces. Langmuir 2004, 20(17), 7097–7102. DOI:10.1021/la049329e.
  • Facio, D. S.; Mosquera, M. J. Simple Strategy for Producing Superhydrophobic Nanocomposite Coatings in Situ on a Building Substrate. ACS Appl. Mater. Interfaces. 2013, 5(15), 7517–7526. DOI:10.1021/am401826g.
  • De Laplace, P. S. Mecanique Celeste. Suppl. au Xieme Livre. Lourier: Paris, 1805.
  • Poisson, S. D. Nouvelle Theorie de L’action Capillaire. Bochelier: Paris, 1831.
  • Andrews, D. H. The Collected Works of J. Williard Gibbs. Yale University Press: London, 1957.
  • Eick, J. D.; Good, R. J.; Neumann, A. W. Thermodynamics of Contact Angles. 2. Rough Solid Surfaces. J. Colloid. Interface. Sci. 1975, 53(2), 235–248. DOI:10.1016/0021-9797(75)90010-7.
  • Neumann, A. W.; Good, R. J. Thermodynamics of Contact Angles. 1. Heterogeneous Solid Surfaces. J. Colloid. Interface. Sci. 1972, 38(2), 341–358. DOI:10.1016/0021-9797(72)90251-2.
  • Schwartz, L. W.; Garoff, S. Contact Angle Hysteresis on Heterogeneous Surfaces. Langmuir 1985, 1(2), 219–230. DOI:10.1021/la00062a007.
  • Marmur, A. Equilibrium Contact Angles: Theory and Measurement. Colloids Surf. A Physicochem. Eng. Asp. 1996, 116(1–2), 55–61. DOI:10.1016/0927-7757(96)03585-6.
  • Marmur, A. A Guide to the Equilibrium Contact Angles Maze. In Contact Angle, Wettability and Adhesion, Mittal, K. L., ed.; Koninklijke Brill NV: Leiden, 2009; pp. 6, 3–18.
  • Drelich, J.; Marmur, A. Physics and Applications of Superhydrophobic and Superhydrophilic Surfaces and Coatings. Surface Innovations 2014, 2(4), 211–227. DOI:10.1680/si.13.00017.
  • Gore, P. M.; Dhanshetty, M.; Balasubramanian, K. Bionic Creation of Nano-Engineered Janus Fabric for Selective Oil/Organic Solvent Absorption. RSC Adv. 2016, 6(112), 111250–111260. DOI:10.1039/C6RA24106A.
  • Zhou, X.; Zhang, Z.; Xu, X.; Guo, F.; Zhu, X.; Men, X.; Ge, B. Robust and Durable Superhydrophobic Cotton Fabrics for Oil/Water Separation. ACS Appl. Mater. Interfaces 2013, 5(15), 7208–7214. DOI:10.1021/am4015346.
  • Li, Q.; Kang, C.; Zhang, C. Waste Water Produced from an Oilfield and Continuous Treatment with an Oil-Degrading Bacterium. Process. Biochemistry 2005, 40(2), 873–877. DOI:10.1016/j.procbio.2004.02.011.
  • Yuliwati, E.; Ismail, A. F. Effect of Additives Concentration on the Surface Properties and Performance of PVDF Ultrafiltration Membranes for Refinery Produced Wastewater Treatment. Desalination 2011, 273, 226−234. DOI:10.1016/j.desal.2010.11.023.
  • Pendashteh, A. R.; Fakhru’l-Razi, A.; Madaeni, S. S.; Abdullah, L. C.; Abidin, Z. Z.; Biak, D. R. A. Membrane Foulants Characterization in a Membrane Bioreactor (MBR) Treating Hypersaline Oily Wastewater. Chem. Eng. J. 2011, 168(1), 140–150. DOI:10.1016/j.cej.2010.12.053.
  • Wang, L. K. Waste Chlorination and Stabilization. In Advanced Physicochemical Treatment Processes, Humana Press, 2006; pp. 403–440.
  • Tai, M. H.; Gao, P.; Tan, B. Y. L.; Sun, D. D.; Leckie, J. O. Highly Efficient and Flexible Electrospun Carbon–Silica Nanofibrous Membrane for Ultrafast Gravity-Driven Oil–Water Separation. ACS Appl. Mater. Interfaces. 2014, 6(12), 9393–9401. DOI:10.1021/am501758c.
  • Xu, X.; Zhu, X. Treatment of Refectory Oily Wastewater by Electro-Coagulation Process. Chemosphere 2004, 56(10), 889–894. DOI:10.1016/j.chemosphere.2004.05.003.
  • Wang, X.; Chen, X.; Yoon, K.; Fang, D.; Hsiao, B. S.; Chu, B. High Flux Filtration Medium Based on Nanofibrous Substrate with Hydrophilic Nanocomposite Coating. Environ. Sci. Technol. 2005, 39(19), 7684–7691. DOI:10.1021/es050512j.
  • Cheryan, M.; Rajagopalan, N. Membrane Processing of Oily Streams. Wastewater Treatment and Waste Reduction. J. Membr. Sci. 1998, 151, 13–28. DOI:10.1016/S0376-7388(98)00190-2.
  • El-Kayar, A.; Hussein, M.; Zatout, A. A.; Hosny, A. Y.; Amer, A. A. Removal of Oil from Stable Oil-Water Emulsion by Induced Air Flotation Technique. Separations Technol. 1993, 3(1), 25–31. DOI:10.1016/0956-9618(93)80003-A.
  • Hosny, A. Y. Separating Oil from Oil-Water Emulsions by Electroflotation Technique. Separations Technol. 1996, 6(1), 9–17. DOI:10.1016/0956-9618(95)00136-0.
  • Tahalyani, J.; Rahangdale, K. K.; Aepuru, R.; Kandasubramanian, B.; Datar, S. Dielectric Investigation of a Conducting Fibrous Nonwoven Porous Mat Fabricated by a One-Step Facile Electrospinning Process. RSC Adv. 2016, 6(43), 36588–36598. DOI:10.1039/C5RA23012H.
  • Zhang, J.; Seeger, S. Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Adv. Funct. Mater. 2011, 21, 4699−4704.
  • Liu, M.; Zheng, Y.; Zhai, J.; Jiang, L. Bioinspired Super-Antiwetting Interfaces with Special Liquid−Solid Adhesion. Acc. Chem. Res. 2009, 43, 368−377.
  • Levkin, P. A.; Svec, F.; Fréchet, J. M. Porous Polymer Coatings: A Versatile Approach to Superhydrophobic Surfaces. Adv. Funct. Mater. 2009, 19, 1993−1998. DOI:10.1002/adfm.200801916.
  • Yao, X.; Song, Y.; Jiang, L. Applications of Bio-Inspired Special Wettable Surfaces. Adv. Mater. 2011, 23, 719−734. DOI:10.1002/adma.201103379.
  • Gupta, P.; Kandasubramanian, B. Directional Fluid Gating By Janus Membranes With Heterogeneous Wetting Properties For Selective Oil-Water Separation. ACS Appl. Mater. Interfaces. 2017, 9, 19102–19113. DOI:10.1021/acsami.7b03313.
  • Zhu, T.; Cai, C.; Duan, C.; Zhai, S.; Liang, S.; Jin, Y.; Xu, J. Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling. ACS Appl. Mater. Interfaces. 2015, 7(25), 13996–14003. DOI:10.1021/acsami.5b03056.
  • Sparks, B. J.; Hoff, E. F.; Xiong, L.; Goetz, J. T.; Bradley, J. Superhydrophobic Hybrid Inorganic–Organic Thiol-Ene Surfaces Fabricated via Spray-Deposition and Photopolymerization. ACS Appl. Mater. Interfaces. 2013, 5(5), 1811–1817. DOI:10.1021/am303165e.
  • Yadav, R.; Kandasubramanian, B. Polyacrylonitrile/Syzygium Aromaticum Hierarchical Hydrophilic Nanocomposite as a Carrier for Antibacterial Drug Delivery Systems. RSC Adv. 2014, 5(5), 3291–3298. DOI:10.1039/C4RA12755B.
  • Tian, D. L.; Zhang, X. F.; Tian, Y.; Wu, Y.; Wang, X.; Zhai, J.; Jiang, L. Photo-Induced Water−Oil Separation Based on Switchable Superhydrophobicity −Superhydrophilicity and Underwater Superoleophobicity of the Aligned ZnO Nanorod Array-Coated Mesh Films. J. Mater. Chem. 2012, 22, 19652−19657. DOI:10.1039/c2jm34056a.
  • Howarter, J. A.; Youngblood, J. P. Amphiphile Grafted Membranes for the Separation of Oil-In-Water Dispersions. J. Colloid Interface Sci. 2009, 329, 127−132. DOI:10.1016/j.jcis.2008.09.068.
  • Zhang, M.; Wang, C. Y.; Wang, S. L.; Shi, Y. L.; Li, J. Fabrication of Coral-Like Superhydrophobic Coating on Filter Paper for Water−Oil Separation. Appl. Surf. Sci. 2012, 261, 764−769. DOI:10.1016/j.apsusc.2012.08.097.
  • Ma, W.; Zhang, Q.; Hua, D.; Xiong, R.; Zhao, J.; Rao, W.; Huang, S.; Zhan, X.; Huang, C. Electrospun Fibers for Oil–Water Separation. RSC Adv. 2016, 6(16), 12868–12884. DOI:10.1039/C5RA27309A.
  • Wang, X. F.; Ding, B.; Sun, G.; Wang, M. R.; Yu, J. Y. Electro-Spinning/Netting: A Strategy for the Fabrication of Three-Dimensional Nano-fiber/Nets. Prog. Mater. Sci. 2013, 58, 1173−1243. DOI:10.1016/j.pmatsci.2013.05.001.
  • Sahay, R.; Kumar, P. S.; Sridhar, R.; Sundaramurthy, J.; Venugopal, J.; Mhaisalkar, S. G.; Ramakrishna, S. Electrospun Composite Nanofibers and Their Multifaceted Applications. J. Mater. Chem. 2012, 22, 12953−12971. DOI:10.1039/c2jm30966a.
  • Gong, J.; Li, X. D.; Ding, B.; Lee, D. R.; Kim, H. Y. Preparation and Characterization of H4SiMo12O40/Poly(vinyl Alcohol) Fiber Mats Produced by an Electrospinning Method. J. Appl. Polym. Sci. 2003, 89, 1573−1578. DOI:10.1002/app.12325.
  • Cho, S. J.; Nam, H.; Ryu, H.; Lim, G.; Rubberlike Stretchable, A. Fibrous Membrane with Anti-Wettability and Gas Breathability. Adv. Funct. Mater. 2013, 23(45), 5577–5584. DOI:10.1002/adfm.201300442.
  • Si, Y.; Yan, C.; Hong, F.; Yu, J.; Ding, B. A General Strategy for Fabricating Flexible Magnetic Silica Nanofibrous Membranes with Multifunctionality. Chem. Commun. 2015, 51(63), 12521–12524. DOI:10.1039/c5cc03718b.
  • Shao, H.; Fang, J.; Wang, H.; Lin, T. Effect of Electrospinning Parameters and Polymer Concentrations on Mechanical-To-Electrical Energy Conversion of Randomly-Oriented Electrospun Poly (Vinylidene Fluoride) Nanofiber Mats. RSC Adv. 2015, 5(19), 14345–14350. DOI:10.1039/C4RA16360E.
  • Beachley, V.; Wen, X. Effect of Electrospinning Parameters on the Nanofiber Diameter and Length. Mater. Sci. Eng. C Mater. Biol. Appl 2009, 29(3), 663–668. DOI:10.1016/j.msec.2008.10.037.
  • Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63(15), 2223–2253. DOI:10.1016/S0266-3538(03)00178-7.
  • Taylor, G. I. Electrically Driven Jets. Proc R Soc London, Ser A 1969, 313, 453–475. DOI:10.1098/rspa.1969.0205.
  • Yingbo, C.; Kim, H. Preparation of Superhydrophobic Membranes by Electrospinning of Fluorinated Silane Functionalized Poly (Vinylidene Fluoride). Appl. Surf. Sci. 2009, 255(15), 7073–7077. DOI:10.1016/j.apsusc.2009.03.043.
  • Wang, H.; Zhou, H.; Niu, H.; Zhang, J.; Du, Y.; Lin, T. Dual‐Layer Superamphiphobic/Superhydrophobic‐Oleophilic Nanofibrous Membranes with Unidirectional Oil‐Transport Ability and Strengthened Oil–Water Separation Performance. Adv. Mater. Interfaces 2015, 2(4), 1400506. DOI:10.1002/admi.201400506.
  • Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2008, 9(1), 30–35. DOI:10.1021/nl801827v.
  • Zhang, J.; Stefan, S. Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Adv. Funct. Mater. 2011, 21(24), 4699–4704. DOI:10.1002/adfm.201101090.
  • Deng, Z. Y.; Wang, W.; Mao, L. H.; Wang, C. F.; Chen, S. Versatile Superhydrophobic and Photocatalytic Films Generated from TiO 2–Sio 2@ PDMS and Their Applications on Fabrics. ‎J. Mater. Chem. A 2014, 2(12), 4178–4184. DOI:10.1039/C3TA14942K.
  • Zhang, M.; Wang, C.; Wang, S.; Li, J. Fabrication of Superhydrophobic Cotton Textiles for Water–Oil Separation Based on Drop-Coating Route. Carbohydr. Polym. 2013, 97(1), 59–64. DOI:10.1016/j.carbpol.2012.08.118.
  • Liu, X.; Ge, L.; Li, W.; Wang, X.; Li, F. Layered Double Hydroxide Functionalized Textile for Effective Oil/Water Separation and Selective Oil Adsorption. ACS Appl. Mater. Interfaces. 2014, 7(1), 791–800. DOI:10.1021/am507238y.
  • Li, K.; Zeng, X.; Li, H.; Lai, X.; Xie, H. Facile Fabrication of Superhydrophobic Filtration Fabric with Honeycomb Structures for the Separation of Water and Oil. Mater. Lett. 2014, 120, 255–258. DOI:10.1016/j.matlet.2014.01.105.
  • Xue, C. H.; Jia, S. T.; Chen, H. Z.; Wang, M. Superhydrophobic Cotton Fabrics Prepared by Sol–Gel Coating of TiO2 and Surface Hydrophobization. Sci. Technol. Advanced Mater. 2008, 9(3), 035001. DOI:10.1088/1468-6996/9/3/035001.
  • Tadros, T.; Izquierdo, R.; Esquena, J.; Solans, C. Formation and Stability of Nano-Emulsions. Adv. Colloid Interface Sci. 2004, 108, 303–318. DOI:10.1016/j.cis.2003.10.023.
  • Meunier, J.; Langevin, D. Physics of Amphiphilic Layers. Springer: Les Houches, 1987.
  • Kota, A. K.; Kwon, G.; Choi, W.; Mabry, J. M.; Tuteja, A. Hygro-Responsive Membranes for Effective Oil–Water Separation. Nat. Commun. 2012, 3, 1025. DOI:10.1038/ncomms2027.
  • Arora, R.; Kandasubramanian, B. Hierarchically Porous PVDF/nano-SiC Foam for Distant Oil-Spill Cleanups. RSC Adv. 2014, 4(96), 53761–53767. DOI:10.1039/C4RA09245G.
  • Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Ramakrishna, S. A Review on Self-Cleaning Coatings. J. Mater. Chem. 2011, 21(41), 16304–16322. DOI:10.1039/c1jm12523k.
  • De Leon, A.; Advincula, R. C. Reversible Superhydrophilicity and Superhydrophobicity on a Lotus-Leaf Pattern. ACS Appl. Mater. Interfaces. 2014, 6(24), 22666–22672. DOI:10.1021/am506050k.
  • Chang, K. C.; Lu, H. I.; Peng, C. W.; Lai, M. C.; Hsu, S. C.; Hsu, M. H.; Tsai, Y. K.; Chang, C. H.; Hung, W. I.; Wei, Y., et al. Nanocasting Technique to Prepare Lotus-Leaf-Like Superhydrophobic Electroactive Polyimide as Advanced Anticorrosive Coatings. ACS Appl. Mater. Interfaces. 2013, 5(4), 1460–1467. DOI:10.1021/am3029377.
  • Yokoi, N.; Manabe, K.; Tenjimbayashi, M.; Shiratori, S. Optically Transparent Superhydrophobic Surfaces with Enhanced Mechanical Abrasion Resistance Enabled by Mesh Structure. ACS Appl. Mater. Interfaces. 2015, 7(8), 4809–4816. DOI:10.1021/am508726k.
  • Parkin, I. P.; Robert, G. P. Self-Cleaning Coatings. J. Mater. Chem. 2005, 15(17), 1689–1695. DOI:10.1039/b412803f.
  • Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44(12R), 8269. DOI:10.1143/JJAP.44.8269.
  • Ragesh, P.; Ganesh, V. A.; Nair, S. V.; Nair, A. S. A Review on ‘Self-Cleaning and Multifunctional Materials’. J. Mater. Chemistry A 2014, 2(36), 14773–14797. DOI:10.1039/C4TA02542C.
  • Ma, M.; Hill, R. M.; Lowery, J. L.; Fridrikh, S. V.; Rutledge, G. C. Electrospun Poly (Styrene-Block-Dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005, 21(12), 5549–5554. DOI:10.1021/la047064y.
  • Arslan, O.; Aytac, Z.; Uyar, T. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification. ACS Appl. Mater. Interfaces. 2016, 8(30), 19747–19754. DOI:10.1021/acsami.6b05429.
  • Fang, W.; Liu, L.; Li, T.; Dang, Z.; Qiao, C.; Xu, J.; Wang, Y. Electrospun N‐Substituted Polyurethane Membranes with Self‐Healing Ability for Self‐Cleaning and Oil/Water Separation. Chemistry-A Eur. J. 2016, 22(3), 878–883. DOI:10.1002/chem.201504340.
  • Zhang, W.; Lu, X.; Xin, Z.; Zhou, C. A Self-Cleaning polybenzoxazine/TiO 2 Surface with Superhydrophobicity and Superoleophilicity for Oil/Water Separation. Nanoscale 2015, 7(46), 19476–19483. DOI:10.1039/c5nr06425b.
  • Karimi, L.; Yazdanshenas, M. E.; Khajavi, R.; Rashidi, A.; Mirjalili, M. Using graphene/TiO2 Nanocomposite as a New Route for Preparation of Electroconductive, Self-Cleaning, Antibacterial and Antifungal Cotton Fabric without Toxicity. Cellulose 2014, 21(5), 3813–3827. DOI:10.1007/s10570-014-0385-1.
  • Li, S.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. A Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications. J. Mater. Chem. 2017, 5(1), 31–55. DOI:10.1039/C6TA07984A.
  • Lai, Y.; Huang, J.; Cui, Z.; Ge, M.; Zhang, K. Q.; Chen, Z.; Chi, L. Recent Advances in TiO2‐Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small 2016, 12(16), 2203–2224. DOI:10.1002/smll.201501837.
  • Lin, J.; Zheng, C.; Ye, W.; Wang, H.; Feng, D.; Li, Q.; Huan, B. A Facile Dip‐Coating Approach to Prepare SiO2/fluoropolymer Coating for Superhydrophobic and Superoleophobic Fabrics with Self‐Cleaning Property. J. Appl. Polym. Sci. 2015, 132(1). DOI:10.1002/app.41458.
  • Bharathidasan, T.; Mandalam, A.; Balasubramanian, M.; Dhandapani, P.; Sathiyanarayanan, S.; Mayavan, S. Zinc Oxide-Containing Porous Boron–Carbon–Nitrogen Sheets from Glycine–Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity. ACS Appl. Mater. Interfaces. 2015, 7(33), 18450–18459. DOI:10.1021/acsami.5b04609.
  • Airoudj, A.; Gall, F. B. Vincent.; Textile with Durable Janus Wetting Properties Produced by Plasma Polymerization. J. Phys. Chem. C 2016, 120(51), 29162–29172. DOI:10.1021/acs.jpcc.6b09373.
  • Mukhopadhyay, A.; Midha, V. K. A. Review on Designing the Waterproof Breathable Fabrics Part I: Fundamental Principles and Designing Aspects of Breathable Fabrics. J. Ind. Text. 2008, 37, 225–262. DOI:10.1177/1528083707082164.
  • Rother, M.; Barmettler, J.; Reichmuth, A.; Araujo, J. V.; Rytka, C.; Glaied, O.; Pieles, U.; Bruns, N. Self-Sealing and Puncture Resistant Breathable Membranes for Water-Evaporation Applications. Adv. Mater. 2015, 27, 6620–6624. DOI:10.1002/adma.201502761.
  • You, J. B.; Yoo, Y.; Oh, M. S.; Im, S. G. Simple and Reliable Method to Incorporate the Janus Property onto Arbitrary Porous Substrates. ACS Appl. Mater. Interfaces. 2014, 6(6), 4005–4010. DOI:10.1021/am4054354.
  • Sheng, J.; Zhang, M.; Xu, Y.; Yu, J.; Ding, B. Tailoring Water-Resistant and Breathable Performance of Polyacrylonitrile Nanofibrous Membranes Modified by Polydimethylsiloxane. ACS Appl. Mater. Interfaces. 2016, 8(40), 27218–27226. DOI:10.1021/acsami.6b09392.
  • Lomax, G. R. Breathable Polyurethane Membranes for Textile and Related Industries. J. Mater.Chem. 2007, 17, 2775–2784. DOI:10.1039/b703447b.
  • Li, Y.; Zhu, Z.; Yu, J.; Ding, B. Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Appl. Mater. Interfaces. 2015, 7(24), 13538–13546. DOI:10.1021/acsami.5b02848.
  • Bagherzadeh, R.; Latifi, M.; Najar, S. S.; Tehran, M. A.; Gorji, M.; Kong, L. Transport Properties of Multi-Layer Fabric Based on Electrospun Nanofiber Mats as A Breathable Barrier Textile Material. Text. Res. J. 2011, 82, 70–76. DOI:10.1177/0040517511420766.
  • Kang, Y. K.; Park, C. H.; Kim, J.; Kang, T. J. Application of Electrospun Polyurethane Web to Breathable Water-Proof Fabrics. Polymer 2007, 8, 564–570.
  • Hong, K. A.; Yoo, H. S.; Kim, E. Effect of Waterborne Polyurethane Coating on the Durability and Breathable Waterproofing of Electrospun Nanofiber Web-Laminated Fabrics. Text. Res. J. 2015, 85, 160–170. DOI:10.1177/0040517514542141.
  • Li, Y.; Yang, F.; Yu, J.; Ding, B. Hydrophobic Fibrous Membranes with Tunable Porous Structure for Equilibrium of Breathable and Waterproof Performance. Adv. Mater. Interfaces 2016, 3(19). DOI:10.1002/admi.201500852.
  • Wang, J.; Raza, A.; Si, Y.; Cui, L.; Ge, J.; Ding, B.; Yu, J. Synthesis of Superamphiphobic Breathable Membranes Utilizing SiO2 Nanoparticles Decorated Fluorinated Polyurethane Nanofibers. Nanoscale 2012, 4(23), 7549–7556. DOI:10.1039/c2nr32883f.
  • Arvaniti, O. S.; Hwang, Y.; Andersen, H. R.; Stasinakis, A. S.; Thomaidis, N. S.; Aloupi, M. Reductive Degradation of Perfluorinated Compounds in Water Using Mg-Aminoclay Coated Nanoscale Zero Valent Iron. Chem. Eng. J. 2015, 262, 133–139. DOI:10.1016/j.cej.2014.09.079.
  • Wang, L.; Xi, G. H.; Wan, S. J.; Zhao, C. H.; Liu, X. D. Asymmetrically Superhydrophobic Cotton Fabrics Fabricated by Mist Polymerization of Lauryl Methacrylate. Cellulose 2014, 21, 2983–2994. DOI:10.1007/s10570-014-0275-6.
  • Xi, G. H.; Fan, W. C.; Wang, L.; Liu, X. D.; Endo, T. Fabrication of Asymmetrically Superhydrophobic Cotton Fabrics via Mist Copolymerization of 2,2,2-Trifluoroethyl Methacrylate. J. Polym. Sci. Part A 2015, 53, 1862–1871. DOI:10.1002/pola.27632.
  • Liu, Y.; Xin, J. H.; Choi, C. H. Cotton Fabrics with Single-Faced Superhydrophobicity. Langmuir 2012, 28, 17426–17434. DOI:10.1021/la303714h.
  • Gu, J. C.; Xiao, P.; Chen, J.; Zhang, J. W.; Huang, Y. J.; Chen, T. Janus Polymer/Carbon Nanotube Hybrid Membranes for Oil/Water Separation. ACS Appl. Mater. Interfaces. 2014, 6, 16204–16209. DOI:10.1021/am504326m.
  • Wang, H. X.; Ding, J.; Dai, L. M.; Wang, X. G.; Lin, T. Directional Water-Transfer through Fabrics Induced by Asymmetric Wettability. J. Mater. Chem. 2010, 20, 7938–7940. DOI:10.1039/c0jm02364g.
  • Liu, Y.; Wang, X. W.; Fei, B.; Hu, H. W.; Lai, C. L.; Xin, J. H. Bioinspired, Stimuli-Responsive, Multifunctional Superhydrophobic Surface with Directional Wetting, Adhesion, and Transport of Water. Adv. Funct. Mater. 2015, 25, 5047–5056. DOI:10.1002/adfm.v25.31.
  • Wang, H. X.; Zhou, H.; Yang, W. D.; Zhao, Y.; Fang, J.; Lin, T. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension. ACS Appl. Mater. Interfaces. 2015, 7, 22874–22880. DOI:10.1021/acsami.5b05678.
  • Kong, Y.; Liu, Y.; Xin, J. H. Fabrics with Self-Adaptive Wettability Controlled by “Light-And-Dark”. J. Mater. Chem. 2011, 21, 17978–17987. DOI:10.1039/c1jm12516h.
  • Zhou, H.; Wang, H. X.; Niu, H. T.; Lin, T. Superphobicity/Philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids. Sci. Rep 2013, 3. DOI:10.1038/srep02964.
  • Lim, H. S.; Park, S. H.; Koo, S. H.; Kwark, Y. J.; Thomas, E. L.; Jeong, Y. J.; Cho, J. H. Superamphiphilic Janus Fabric. Langmuir 2010, 26, 19159–19162. DOI:10.1021/la103829c.
  • Tian, X. L.; Jin, H.; Sainio, J.; Ras, R. H. A.; Ikkala, O. Droplet and Fluid Gating by Biomimetic Janus Membranes. Adv. Funct. Mater. 2014, 24, 6023–6028. DOI:10.1002/adfm.201400714.
  • Liu, H.; Gao, S. W.; Cai, J. S.; He, C. L.; Mao, J. J.; Zhu, T. X.; Al-Deyab, S. S. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials 2016, 9(3), 124. DOI:10.3390/ma9030124.
  • Wang, H.; Zhou, H.; Yang, W.; Zhao, Y.; Fang, J.; Lin, T. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension. ACS Appl. Mater. Interfaces. 2015, 7(41), 22874–22880. DOI:10.1021/acsami.5b05678.
  • Wang, H.; Ding, J.; Dai, L.; Wang, X.; Lin, T. Directional Water-Transfer through Fabrics Induced by Asymmetric Wettability. J. Mater. Chem. 2010, 20(37), 7938–7940. DOI:10.1039/c0jm02364g.
  • Wang, Y.; Li, X.; Hu, H.; Liu, G.; Rabnawaz, M. Hydrophilically Patterned Superhydrophobic Cotton Fabrics and Their Use in Ink Printing. J. Mater. Chem. 2014, 2(21), 8094–8102. DOI:10.1039/C4TA00714J.
  • Xing, S. Y.; Jiang, J.; Pan, T. R. Interfacial Microfluidic Transport on Micropatterned Superhydrophobic Textile. Lab. Chip 2013, 13, 1937–1947. DOI:10.1039/c3lc50269d.
  • Wu, J.; Li, J.; Deng, B.; Jiang, H.; Wang, Z.; Yu, M.; Li, Y. Self-Healing of the Superhydrophobicity by Ironing for the Abrasion Durable Superhydrophobic Cotton Fabrics. Sci. Rep. 2013, 3. DOI:10.1038/srep02951.
  • Bayer, I. S.; Fragouli, D.; Attanasio, A.; Sorce, B.; Bertoni, G.; Brescia, R.; Pompa, P. P. Water-Repellent Cellulose Fiber Networks with Multifunctional Properties. ACS Appl. Mater. Interfaces. 2011, 3(10), 4024–4031. DOI:10.1021/am200891f.
  • Chen, S. S.; Li, X.; Li, Y.; Sun, J. Q. Intumescent Flame-Retardant and Self-Healing Superhydrophobic Coatings on Cotton Fabric. ACS Nano 2015, 9, 4070–4076. DOI:10.1021/nn507282f.
  • Srivastava, Y.; Marquez, M.; Thorsen, T. Microfluidic Electrospinning of Biphasic Nanofibers with Janus Morphology. Biomicrofluidics 2009, 3(1), 012801. DOI:10.1063/1.3009288.
  • Padaki, M.; Murali, R. S.; Abdullah, M. S.; Misdan, N.; Moslehyani, A.; Kassim, M. A.; Hilal, N.; Ismail, A. F. Membrane Technology Enhancement in Oil–Water Separation. A Review. Desalination 2015, 357, 197–207. DOI:10.1016/j.desal.2014.11.023.
  • Bader, M. S. H. Seawater versus Produced Water in Oil-Fields Water Injection Operations. Desalination 2007, 208(1–3), 159–168. DOI:10.1016/j.desal.2006.05.024.
  • Ochoa, N. A.; Masuelli, M.; Marchese, J. Effect of Hydrophilicity on Fouling of an Emulsified Oil Wastewater with PVDF/PMMA Membranes. J. Memb. Sci. 2003, 226(1), 203–211. DOI:10.1016/j.memsci.2003.09.004.
  • Rahimpour, A.; Madaeni, S. S. Polyethersulfone (Pes)/Cellulose Acetate Phthalate (CAP) Blend Ultrafiltration Membranes: Preparation, Morphology, Performance and Antifouling Properties. J. Memb. Sci. 2007, 305(1), 299–312. DOI:10.1016/j.memsci.2007.08.030.
  • Wang, Y.; Wang, Y.; Yan, X.; Wu, S.; Shao, L.; Liu, Y.; Guo, Z. Toluene Diisocyanate Based Phase-Selective Supramolecular Oil Gelator for Effective Removal of Oil Spills from Polluted Water. Chemosphere 2016, 153, 485–493. DOI:10.1016/j.chemosphere.2016.03.036.
  • Mansourizadeh, A.; Azad, A. J. Preparation of Blend Polyethersulfone/Cellulose Acetate/Polyethylene Glycol Asymmetric Membranes for Oil–Water Separation. J. Polymer Res. 2014, 21(3), 375. DOI:10.1007/s10965-014-0375-x.
  • Nunes, S. P.; Peinemann, K. V. Ultrafiltration Membranes from PVDF/PMMA Blends. J. Memb. Sci. 1992, 73(1), 25–35. DOI:10.1016/0376-7388(92)80183-K.
  • Ong, C.; Lau, W.; Goh, P.; Ng, B.; Ismail, A. Preparation and Characterization of PVDF− PVP−TiO2 Composite Hollow Fiber Membranes for Oily Wastewater Treatment Using Submerged Membrane System. Desalin. Water Treat. 2015, 53, 1213−1223.
  • Ulbricht, M. Advanced Functional Polymer Membranes. Polymer 2006, 47, 2217−2262. DOI:10.1016/j.polymer.2006.01.084.
  • Masuelli, M.; Grasselli, M.; Marchese, J.; Ochoa, N. Preparation, Structural and Functional Characterization of Modified Porous PVDF Membranes by γ-Irradiation. J. Membr. Sci. 2012, 389, 91−98. DOI:10.1016/j.memsci.2011.10.019.
  • Manabe, K.; Nishizawa, S.; Shiratori, S. Porous Surface Structure Fabricated by Breath Figures that Suppresses Pseudomonas Aeruginosa Biofilm Formation. ACS Appl. Mater. Interfaces. 2013, 5, 22 11900–11905. DOI:10.1021/am4035762.
  • Shirazi, M.; Kargari, A.; Bazgir, S.; Tabatabaei, M.; Shirazi, M.; Abdullah, M.; Matsuura, T.; Ismail, A. Characterization of Electrospun Polystyrene Membrane for Treatment of Biodiesel’s Water-Washing Effluent Using Atomic Force Microscopy. Desalination 2013, 329, 1−8. DOI:10.1016/j.desal.2013.08.019.
  • Lafuma, A.; Quere, D. Superhydrophobic States. Nat. Mater. 2003, 2, 457−60. DOI:10.1038/nmat924.
  • Cao, Y.; Zhang, X.; Tao, L.; Li, K.; Xue, Z.; Feng, L.; Wei, Y. Mussel-Inspired Chemistry and Michael Addition Reaction for Efficient Oil/Water Separation. ACS Appl. Mater. Interfaces. 2013, 5, 4438−4442. DOI:10.1021/am4008598.
  • Gao, C.; Sun, Z.; Li, K.; Chen, Y.; Cao, Y.; Zhang, S.; Feng, L. Integrated Oil Separation and Water Purification by a Double-Layer TiO2-Based Mesh. Energy Environ. Sci. 2013, 6(4), 1147–1151. DOI:10.1039/c3ee23769a.
  • Gore, P. M.; Kandasubramanian, B. Heterogeneous Wettable Cotton Based Superhydrophobic Janus Biofabric Engineered with PLA/functionalized-Organoclay Microfibers for Efficient Oil–water Separation. J. Mater. Chem. A 2018, 6(17), 7457–11905. DOI:10.1039/C7TA11260B.
  • (1) Korde, J. M.; Kandasubramanian, B. Biocompatible Alkyl Cyanoacrylates and Their Derivatives as Bio-Adhesives. Biomater. Sci. 2018, Just accepted. DOI:10.1039/C8BM00312B.
  • Padhi, S.; Gosavi, S., Yadav, R.; Kandasubramanian, B. Quantitative Evolution of Wetting Phenomena for Super Hydrophobic Surfaces. Focus 2018, 7(3), 305–315.
  • Simon, S.; Kandasubramanian, B. Facile Immobilization of Camphor Soot on Electrospun Hydrophobic Membrane for Oil-Water Separation. Mater. Focus 2018, 7(2), 295–303.
  • Simon, S.; Malik, A.; Kandasubramanian B. Hierarchical Electrospun Super-Hydrophobic Nanocomposites of Fluoroelastomer. Mater. Focus 2018, 7(2), 194–206.
  • Deoray, N.; Kandasubramanian, B. Review on Three-Dimensionally Emulated Fiber-Embedded Lactic Acid Polymer Composites: Opportunities in Engineering Sector. Polym. Plast. Technol. Eng. 2018, 57(9), 860–874. DOI:10.1080/03602559.2017.1354226.
  • Korde, J. M.; Shaikh, M.; Kandasubramanian, B. Bionic Prototyping of Honeycomb Patterned Polymer Composite and Its Engineering Application. Polym. Plast. Technol. Eng. 2018, 1–17. DOI:10.1080/03602559.2018.1434667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.