250
Views
6
CrossRef citations to date
0
Altmetric
Articles

An Innovative Approach to the Synthesis of PMMA/PEG/Nanobifiller Filled Nanocomposites with Enhanced Mechanical and Thermal Properties

, , , &

References

  • Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.-C.; Ruoff, R.-S. Graphene Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science. 2015, 347, 6217. DOI: 10.1126/science.1246501.
  • Wan, Q.; Liu, M.; Tian, J.; Deng, F.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Zhang, X.; Wei, Y. Surface Modification of Carbon Nanotubes by Combination of Mussel Inspired Chemistry and SET-LRP. Polym. Chem. 2015, 6, 1786–1792. DOI: 10.1039/C4PY01565G.
  • Wan, Q.; Liu, M.; Tian, J.; Deng, F.; Dai, Y.; Wang, K.; Li, Z.; Zhang, Q.; Zhang, X.; Wei, Y. Toward the Development of Versatile Functionalized Carbon Nanotubes. RSC. 2015, 5, 38316–38323. DOI: 10.1039/C4RA17292B.
  • Wuest, K.-N.; Trouillet, V.; Goldmann, A.-S.; Stenzel, M.-H.; Barner-Kowollik, C. Polymer Functional Nanodiamonds by Light-Induced Ligation. Macromolecules. 2016, 49, 1712–1721. DOI: 10.1021/acs.macromol.5b02607.
  • Liu, M.; Xu, D.; Wang, K.; Deng, F.; Wan, Q.; Zeng, G.; Huang, Q.; Zhang, X.; Wei, Y. Nanodiamond Based Supermolecular Nanocomposites: Preparation and Biocompatibility Evaluation. RSC. 2015, 5, 96983–96989. DOI: 10.1021/acs.macromol.5b02607.
  • Cui, Z.; Zhang, Y.; Zhang, J.; Kong, H.; Tang, X.; Pan, L.; Xia, K.; Aldalbahi, A.; Li, A.; Tai, R. Sodium Alginate-Functionalized Nanodiamonds as Sustained Chemotherapeutic Drug-Release Vectors. Carbon. 2016, 97, 78–86. DOI: 10.1016/j.carbon.2015.07.066.
  • Zhang, Y.; Cui, Z.; Kong, H.; Xia, K.; Pan, L.; Li, J.; Sun, Y.; Shi, J.; Wang, L.; Zhu, Y. One–Shot Immunomodulatory Nanodiamond Agents for Cancer Immunotherapy. Advanced Mater. 2016, 28, 2699–2708. DOI: 10.1002/adma.201506232.
  • Shi, Y.; Liu, M.; Wang, K.; Huang, H.; Wan, Q.; Tao, L.; Fu, L.; Zhang, X.; Wei, Y. Direct Surface PEGylation of Nanodiamond via RAFT Polymerization. Appl. Surf. Sci. 2015, 357, 2147–2153. DOI: 10.1016/j.apsusc.2015.09.200.
  • Xie, Y.; He, C.; Liu, L.; Mao, L.; Wang, K.; Huang, Q.; Liu, M.; Wan, Q.; Deng, F.; Huang, H. Carbon Nanotube Based Polymer Nanocomposites: Biomimic Preparation and Organic Dye Adsorption Applications. RSC. Adv.. 2015, 5, 82503–82512. DOI: 10.1039/C5RA15626B.
  • Sandoval, E.-M.; Lopez, N.-P.; Juarez, R.-L.; Labrada-Delgado, G.-J.; Rivera-Escoto, B.-A.; Zamudio, A.; Silva-Pereyra, H.-G.; Avila, E.-R.; Terrones, M. Synthesis, Characterization and Magnetic Properties of Co@ Au Core-Shell Nanoparticles Encapsulated by Nitrogen-Doped Multiwall Carbon Nanotubes. Carbon. 2014, 77, 722–737. DOI: 10.1016/j.carbon.2014.05.077.
  • Zhang, X.; Zeng, G.; Tian, J.; Wan, Q.; Huang, Q.; Wang, K.; Zhang, Q.; Liu, M.; Deng, F.; Wei, Y. PEGylation of Carbon Nanotubes via Mussel Inspired Chemistry: Preparation, Characterization and Biocompatibility Evaluation. Appl. Surf. Sci. 2015, 351, 425–432. DOI: 10.1016/j.apsusc.2015.05.160.
  • Zhang, X.; Liu, M.; Zhang, X.; Deng, F.; Zhou, C.; Hui, J.; Liu, W.; Wei, Y. Interaction of Tannic Acid with Carbon Nanotubes: Enhancement of Dispersibility and Biocompatibility. Toxicol. Res. 2015, 4, 160–168. DOI: 10.1039/C4TX00066H.
  • Shi, Y.; Liu, M.; Wang, K.; Deng, F.; Wan, Q.; Huang, Q.; Fu, L.; Zhang, X.; Wei, Y. Bioinspired Preparation of Thermo-Responsive Graphene Oxide Nanocomposites in an Aqueous Solution. Polym. Chem. 2015, 6, 5876–5883. DOI: 10.1039/C5PY00844A.
  • Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F. Preparation of Amine Functionalized Carbon Nanotubes via a Bioinspired Strategy and Their Application in Cu2+ Removal. Appl. Surf. Sci. 2015, 343, 19–27. DOI: 10.1016/j.apsusc.2015.03.081.
  • Wan, Q.; Tian, J.; Liu, M.; Zeng, G.; Huang, Q.; Wang, K.; Zhang, Q.; Deng, F.; Zhang, X.; Wei, Y. Surface Modification of Carbon Nanotubes via Combination of Mussel Inspired Chemistry and Chain Transfer Free Radical Polymerization. Appl. Surf. Sci. 2015, 346, 335–341. DOI: 10.1016/j.apsusc.2015.04.012.
  • Haleem, Y.-A.; Liu, D.; Chen, W.; Wang, C.; Hong, C.; He, Z.; Liu, J.; Song, P.; Yu, S.; Song, L. Surface Functionalization and Structure Characterizations of Nanodiamond and Its Epoxy Based Nanocomposites. Composites Part. B. 2015, 78, 480–487. DOI: 10.1016/j.compositesb.2015.04.012.
  • Jabeen, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polym. Plast. Technol. Eng. 2015, 54, 1379–1409. DOI: 10.1080/03602559.2015.1021489.
  • Kausar, A. A Study on Poly(Vinyl alcohol-co-ethylene)-graft-Polystyrene Reinforced with Two Functional Nanofillers. Polym. Plast. Technol. Eng. 2015, 54, 741–749. DOI: 10.1080/03602559.2014.974279.
  • Abdelrazek, E.-M.; Hezma, A.-M.; El-Khodary, A.; Elzayat, A.-M. Spectroscopic Studies and Thermal Properties of PCL/PMMA Biopolymer Blend. Egypt. J. Basic. Appl. Sci. 2016, 3, 10–15. DOI: 10.1016/j.ejbas.2015.06.001.
  • Hayashida, K.; Matsuoka, Y. Electromagnetic Interference Shielding Properties of Polymer-Grafted Carbon Nanotube Composites with High Electrical Resistance. Carbon. 2015, 85, 363–371. DOI: 10.1016/j.carbon.2015.01.006.
  • Elme´R, A.-M.; Jannasch, P. Solid Electrolyte Membranes from Semi-Interpenetrating Polymer Networks of PEG-grafted Polymethacrylates and Poly(Methyl Methacrylate). Solid State Ionics. 2006, 177, 573–579. DOI: 10.1016/j.ssi.2005.12.021.
  • Kapsalis, V.; Karamanis, D. Solar Thermal Energy Storage and Heat Pumps with Phase Change Materials. Appl. Thermal Eng. 2016, 99, 1212–1224. DOI: 10.1016/j.applthermaleng.2016.01.071.
  • Mir, S.-M.; Jafari, S.-H.; Khonakdar, H.-A.; Krause, B.; Pötschke, P.; Qazvini, N.-T. A Promising Approach to Low Electrical Percolation Threshold in PMMA Nanocomposites by Using MWCNT-PEO Pre-Dispersion. Mater. Des. 2016, 111, 253–262. DOI: 10.1016/j.applthermaleng.2016.01.071.
  • Reyes-Acosta, M.-A.; Torres-Huerta, A.-M.; Domínguez-Crespo, M.-A.; Flores-Vela, A.-I.; Dorantes-Rosales, H.-J.; Ramírez-Meneses, E. Influence of ZrO2 Nanoparticles and Thermal Treatment on the Properties of PMMA/ZrO2 Hybrid Coatings. J. Alloys Compd. 2015, 643, 150–158. DOI: 10.1016/j.jallcom.2014.10.040.
  • Wei, Q.-B.; Fu, F.; Zhang, Y.-Q.; Tang, L.; Wang, B. Synthesis, Characterization, and Properties of PMMA-g-PVA/Ag Vapor-Induced Responsive Nanocomposite. Adv. Polymer Technol. 2013, 32, 624–632. DOI: 10.1002/adv.21306.
  • Park, J.; Lee, S.; Lee, J.-W. Effect of Manufacturing Condition in PC/PMMA/CNT Nanocomposites Extrusion on the Electrical, Morphological, and Mechanical Properties. Korea Aust. Rheol. J. 2015, 27, 55–62. DOI: 10.1007/s13367-015-0007-y.
  • Katarına, M.-K.; Zdenko, S.-Y.; Jaroslav, K.; Jan, P.; Amalia, S.; Costas, A. Influence of Preparation Methods on the Electrical and Nanomechanical Properties of Poly(Methyl Methacrylate)/Multiwalled Carbon Nanotubes Composites. J. Appl. Polym. Sci. 2015, 41, 1–11. DOI: 10.1002/app.41721.
  • Lee, M.; Koo, T.; Lee, S.; Byong, H.-M.; Kim, J.-H. Morphology and Physical Properties of Nanocomposites Based on Poly(Methyl methacrylate)/Poly(vinylidene Fluoride) Blends and Multiwalled Carbon Nanotubes. Polym. Compos. 2015, 36, 1195–1204. DOI: 10.1002/pc.23022.
  • Behrouz, A.; Harold, S.-P.; Timon, R. Mechanical Properties of Carbon Nanotube Reinforced Polymer Nanocomposites: A Coarse-Grained Model. Composites Part. B. 2015, 80, 2–100. DOI: 10.1016/j.compositesb.2015.05.038.
  • Loomis, J.; Panchapakesan, B. Dimensional Dependence of Photomechanical Response in Carbon Nanostructure Composites: A Case for Carbon-Based Mixed-Dimensional Systems. Nanotechnology. 2012, 23, 12–21. DOI: 10.1088/0957-4484/23/21/215501.
  • Kausar, A. Novel Water Purification Membranes of Polystyrene/Multi-Walled Carbon Nanotube-grafted-Graphene Oxide Hybrids. Am. J. Pol. Sci. 2014, 4, 63–72. DOI: 10.5923/j.ajps.20140403.01.
  • Khan, D.-M.; Kausar, A.; Salman, S.-M. Fabrication and Characterization of Polyvinyl Chloride/Poly (Styrene-Co-Maleic Anhydride) Intercalated Functional Nanobifiller-Based Composite Paper. Int. J. Pol. Ana. Char. 2016, 21, 228–243. DOI: 10.1080/1023666X.2016.1139295.
  • Maitra, U. Covalent Crosslinking of Carbon Nanostructures. J. Chem. Sci. 2012, 124, 551–556. DOI: 10.1007/s12039-012-0255-z.
  • Farooq, U.; Khurram, -A.-A.; Khan, M.-S. Carbon Nanotube/Nanodiamond Reinforced Carbon Fiber Epoxy Matrix Composites – Processing and Characterization. NUST J. Eng. Sci. 2013, 6, 1–4.
  • Osipov, V.-Y.; Aleksenskiy, A.-E.; Shames, A.-I.; Panich, A.-M.; Shestakov, M.-S.; Vul, A.-Y. Infrared Absorption Study of Surface Functional Groups Providing Chemical Modification of Nanodiamonds by Divalent Copper Ion Complexes. Diam. Relat. Mater. 2011, 20, 1234–1238. DOI: 10.1016/j.diamond.2011.07.008.
  • Mochalin, V.-N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. DOI: 10.1038/nnano/2011.209.
  • Hajiali, F.; Shojaei, A. Silane Functionalization of Nanodiamond for Polymer Nanocomposites-Effect of Degree of Silanization. Colloids Surfaces A: Physicochem. Eng. Aspects. 2016, 506, 254–263. DOI: 10.1016/j.colsurfa.2016.06.028.
  • Etemadi, H.; Yegani, R.; Baaeipour, V. Study on the Reinforcing Effect of Nanodiamond Particles on the Mechanical, Thermal and Antibacterial Properties of Cellulose Acetate Membranes. Diamond Relat. Mater. 2016, 69, 166–176. DOI: 10.1016/j.diamond.2016.08.014.
  • Thomas, P.; Dakshayini, B.-S.; Kushwaha, H.-S.; Vaish, R. Effect of Sr2TiMnO6 Fillers on Mechanical, Dielectric and Thermal Behaviour of PMMA Polymer. J. Adv. Dielect. 2015, 5, 11. DOI: 10.1142/S2010135X15500186.
  • Constanda, S.; Stan, M.-S.; Ciobanu, C.-S.; Motelica-Heino, M.; Guégan, R.; Lafdi, K.; Dinischiotu, A.; Predoi, D. Carbon Nanotubes-Hydroxyapatite Nanocomposites for an Improved Osteoblast Cell. J. Nanomaterials. 2016, 10, DOI: 10.1155/2016/3941501.
  • Ahmad, N.; Kausar, A.; Muhammad, B. An Investigation on 4-Aminobenzoic Acid Modified Polyvinyl Chloride/Graphene Oxide and PVC/graphene Oxide Based Nanocomposites Membranes. J. Plast. Film Sheeting. 2016, 32, 419–448. DOI: 10.1177/8756087915616434.
  • Kalajahi, M.-S.; Asl, V.-H.; Sadabad, F.-B.; Razin, S.-R.; Mamaqani, H.-R. Properties of PMMA/Carbon Nanotubes Nanocomposites Prepared by “Grafting Through” Method. Polym. Compos. 2012, 33, 215–224. DOI: 10.1002/pc.22141.
  • Jayakumar, N. Morphological Characterisation of Poly Methyl Methacrylate for Surface Coating of Metals. Int. J. Mech. Engg.Technol. 2015, 8, 39–143.
  • Al-Osaimi, J.; Alhosiny, N.; Badawi, A.; Abdallah, S. The Effects of CNTs Types on the Structural and Electrical Properties of CNTs/PMMA Nanocomposite Films. Int. J. Engg Technol. 2013, 13, 77–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.