100
Views
3
CrossRef citations to date
0
Altmetric
Articles

Study on the structure and properties of Poly(methylmethacrylate)/Polypyrrole-Graphene Oxide nanocomposites

, &
Pages 1157-1169 | Received 23 Feb 2018, Accepted 27 Oct 2018, Published online: 28 Nov 2018

References

  • Thostenson, E.; Chou, T. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing. Adv. Mater. 2006, 18, 2837. DOI: 10.1002/(ISSN)1521-4095.
  • Monti, M.; Natali, M.; Petrucci, R.; Kenny, J.; Torre, L. Impact Damage Sensing in Glass Fiber Reinforced Composites Based on Carbon Nanotubes by Electrical Resistance Measurements. Appl. Polym. Sci. 2011, 4, 2829. DOI: 10.1002/app.34412.
  • Monti, M.; Natali, M.; Petrucci, R.; Kenny, J.; Torre, L. Carbon Nanofibers for Strain and Impact Damage Sensing in Glass Fiber Reinforced Composites Based on an Unsaturated Polyester Resin. Polym. Compos. 2011, 5, 766. DOI: 10.1002/pc.21098.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. FRENCH Protests. Researchers Back a 70-Page Agenda to Reform Agencies, Boost Careers. Science 2004, 306, 666. DOI: 10.1126/science.306.5698.956a.
  • Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-Based Electronics. Nat. Nanotechnol. 2007, 2, 605. DOI: 10.1038/nnano.2007.300.
  • Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 5, 902. DOI: 10.1021/nl0731872.
  • Booth, T. J.; Blake, P.; Nair, R. R.; Jiang, D.; Hill, E. W.; Bangert, U.; Bleloch, A.; Gass, M.; Novoselov, K. S.; Katsnelson, M. I.; et al. Macroscopic Graphene Membranes and Their Extraordinary Stiffness. Nano Lett. 2008, 8, 2442. DOI: 10.1021/nl801412y.
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 446, 282. DOI: 10.1038/nature04969.
  • Wu, C.; Huang, X.; Wang, G.; Wu, X.; Yang, K.; Li, S.; Jiang, P. Hyperbranched-Polymer Functionalization of Graphene Sheets for Enhanced Mechanical and Dielectric Properties of Polyurethane Composites. Mat. Chem. 2012, 22, 7010. DOI: 10.1039/c2jm16901k.
  • Nakada, K.; Fujita, M.; Dresselhaus, G. Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence. Phys. Rev. B. 1996, 54, 17954. DOI: 10.1103/PhysRevB.54.17954.
  • He, H.; Klinowski, J.; Forster, M. A New Structural Model for Graphite Oxide. Chem. Phys. Lett. 1998, 287, 53. DOI: 10.1016/S0009-2614(98)00144-4.
  • Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. Phys. Chem. B. 1998, 102, 4477. DOI: 10.1021/jp9731821.
  • Bora, C.; Dolui, S. K. Fabrication of Polypyrrole/Graphene Oxide Nanocomposites by Liquid/Liquid Interfacial Polymerization and Evaluation of Their Optical, Electrical and Electrochemical Properties. Polymer 2012, 53, 923. DOI: 10.1016/j.polymer.2011.12.054.
  • Ming, Z.; Zhai, Y.; Dong, S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 14, 5603.
  • Yang, W.; Ratinac, K.; Ringer, S.; Thordarson, P.; Gooding, J.; Braetet, F. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem. Eng. 2010, 12, 2114.
  • Wang, D.; Li, F.; Zhao, J.; Ren, W.; Chen, Z.; Tan, J.; Wu, Z.-S.; Gentle, I.; Lu, G. Q.; Cheng, H.-M. Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electropolymerization for High-Performance Flexible Electrode. ACS Nano. 2009, 22, 1745. DOI: 10.1021/nn900297m.
  • Wei, T.; Fan, Z.; Luo. G.; Zheng. C.; Xie. D. A rapid and efficient method to prepare exfoliated graphite by microwave irradiation, Carbon 2009, 47, 337. https://doi.org/10.1016/j.carbon.2008.10.013.
  • Gu, Z.; Zhang, L.; Li, C. Preparation of Highly Conductive Polypyrrole/Graphite Oxide Composites via in Situ Polymerization. Macromol. Sci. Part. B Phys. 2009, 48, 1093. DOI: 10.1080/00222340903035576.
  • Gu, Z.; Li, C.; Wang, G.; Zhang, L.; Li, X.; Wang, W.; Jin, S. Synthesis and Characterization of Polypyrrole/Graphite Oxide Composite by in Situ Emulsion Polymerization. Polym. Sci. Part. B Polym. Phys. 2010, 48, 1329. DOI: 10.1002/polb.v48:12.
  • Moosaei, R.; Sharif, M.; Ramezannezhad, A. Enhancement of Tensile, Electrical and Thermal Properties of Epoxy Nanocomposites through Chemical Hybridization of Polypyrrole and Graphene Oxide. Polym. Test. 2017, 60, 173. DOI: 10.1016/j.polymertesting.2017.03.022.
  • Sharif, M.; Pourabbas, B. Photo-Reduction of Graphene Oxide during Photo-Polymerization of Graphene Oxide/Epoxy-Novolac Nanocomposite Coatings. Photopolyr. Sci. Tech. 2016, 5, 769–773. DOI: 10.2494/photopolymer.29.769.
  • Sharif, M.; Pourabbas, B.; Sangermano, M.; Sadeghi Moghadam, F.; Mohammadi, M.; Roppolo, I.; Fazli, A. The effect of graphene oxide on UV curingkinetics and properties of SU8 nanocomposites.PolymInt. 2017, 66, 405–417.
  • Amani, M.; Sharif, M.; Kashkooli, A.; Rahnama, N.; Fazli, A. Synthesis and Protein Incorporation of Azido-Modified Unnatural Amino Acids. RSC Adv. 2015, 5, 77723. DOI: 10.1039/C4RA14244F.
  • Zare, M.; Sharif, M.; Kashkooli, A. Study on the Effect of Polypyrrole and Polypyrrole/Graphene Oxide Nanoparticles on the Microstructure, Electrical and Tensile Properties of Polypropylene Nanocomposites. Polym. Plast. Technol. Eng. 2014, 53, 1392. DOI: 10.1080/03602559.2014.909472.
  • Rostampour, A.; Sharif, M.; Mouji, N. Synergetic Effects of Graphene Oxide and clay on the Microstructure and Properties of HIPS/Graphene Oxide/ clay Nanocomposites. Polym. Plast. Technol. Eng. 2017, 65, 173.
  • Potts, J. R.; Dreyer, D. R.; Bielawski, C. W. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5. DOI: 10.1016/j.polymer.2010.11.042.
  • Zeng, X.; Yang, J.; Yuan, W. Preparation of a Poly(Methyl Methacrylate)-Reduced Graphene Oxide Composite with Enhanced Properties by a Solution Blending Method. Eur. Polym. J. 2012, 48, 1674. DOI: 10.1016/j.eurpolymj.2012.07.011.
  • Asharaf, S. M.; Ahmad, S.; Riaz, U. Pseudothermoset Blends of Poly (Methyl Methacrylate) and Polypyrrole Morphological, Thermal, and Conductivity Studies. Appl. Polym. Sci. 2004, 93, 82. DOI: 10.1002/(ISSN)1097-4628.
  • Dutta, P.; De, S. K. Electrical Properties of Polypyrrole Doped with β-naphthalenesulfonicacid and Polypyrrole–Polymethyl Methacrylate Blends. Synth. Met. 2003, 139, 201. DOI: 10.1016/S0379-6779(03)00018-3.
  • Abel, M. L.; Chehimi, M. M.; Fricker, F.; Delmar, M.; Brown, A. M.; Watts, J. F. Adsorption of Poly(Methyl Methacrylate) and Poly(Vinyl Chloride) Blends onto Polypyrrole. J. Chromatogr. 2002, 969, 273. DOI: 10.1016/S0021-9673(02)00894-4.
  • Yang, S.; Ruckenstein, E. Processable Conductive Composites of Polyaniline/Poly(Alkyl Methacrylate) Prepared via an Emulsion Method. Synth. Met. 1993, 59, 1. DOI: 10.1016/0379-6779(93)91152-R.
  • Ruckenstein, E.; Yang, S. Processable Conductive Polypyrrole/Poly(Alkyl Methacrylate) Composites Prepared by an Emulsion Pathway. Polymer 1993, 34, 4655. DOI: 10.1016/0032-3861(93)90698-A.
  • Goncalves, G.; Marques, P.; Singh, M.; Singh, M.; Gracio, J. Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler. Mater. Chem. 2010, 20, 9927. DOI: 10.1039/c0jm01674h.
  • Morimune, S.; Nishino, T.; Goto, T. Photopolymeric Multifunctional Dendrimer toward Holographic Applications. ACS Appl. Mater. Interfaces 2012, 4, 3596. DOI: 10.1021/am3012406.
  • Pramoda, K.; Hussain, H.; Koh, H.; Tan, H. Covalent Bonded Polymer-Graphene Nanocomposites. Polym. Sci. Polym. Chem. 2010, 48, 4262. DOI: 10.1002/pola.24212.
  • Wang, J.; Shang, X.; Shang, X.; Shang, X.; Shang, X. Preparation and Mechanical and Electrical Properties of Graphene Nanosheets-Poly(Methyl Methacrylate) Nanocomposites via in Situ Suspension Polymerization. Appl. Polym. Sci. 2011, 122, 1866. DOI: 10.1002/app.34284.
  • Lee, S.; Dreyer, D.; Piner, R.; Kim, S.; Bielawski, C.; Kim, S.; Bielawski, C. Polymer Brushes via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (ATRP) from Graphene Oxide. Macromol. Rapid Comm. 2010, 31, 281. DOI: 10.1002/marc.v31:3.
  • Khezri, T.; Sharif, M.; Pourabas, B. Polythiophene–Graphene Oxide Doped Epoxy Resin Nanocomposites with Enhanced Electrical, Mechanical and Thermal Properties. RSC Adv. 2016, 6, 93680. DOI: 10.1039/C6RA16701B.
  • Omastova, M.; Trchova, M.; Kova Rova, J.; Stejskal, Synthesis and structural study of polypyrroles prepared in the presence of surfactants J. Synth. Met. 2003, 138, 447.
  • Ma, J.; La, L.; Zaman, I. Fabrication, Structure and Properties of Epoxy/Metal Nanocomposites. Macromol. Mater. Eng. 2011, 296, 465. DOI: 10.1002/mame.v296.5.
  • Ma, J.; Qi, Q.; Bayley, J.; Du, X.; Mo, M.; Zhang, L. Development of SENB Toughness Measurement for Thermoset Resins. Polym. Test 2007, 26, 445. DOI: 10.1016/j.polymertesting.2006.12.011.
  • Meng, Q.; Zaman, I.; Hannam, J. Improvement of Adhesive Toughness Measurement. Polym. Test 2011, 30, 243. DOI: 10.1016/j.polymertesting.2011.01.001.
  • Nethravathi, C.; Rajamathi, M. Chemically Modified Graphene Sheets Produced by the Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide. Carbon 2008, 46, 1994. DOI: 10.1016/j.carbon.2008.08.013.
  • Kassaee, M. Z.; Motamedi, E.; Majdi, M. Magnetic Fe3O4-graphene Oxide/Polystyrene: Fabrication and Characterization of a Promising Nanocomposite. Chem. Eng. J. 2011, 172, 540. DOI: 10.1016/j.cej.2011.05.093.
  • Tripathi, S.; Saini, P.; Gupta, D.; Choudhary, V. Electrical and Mechanical Properties of PMMA/reduced Graphene Oxide Nanocomposites Prepared via in Situ Polymerization. Mater. Sci. 2013, 48, 6223. DOI: 10.1007/s10853-013-7420-8.
  • Wang, J.; Wang, X.; Xu, C.; Zhang, M.; Shang, X. Preparation of Graphene/Poly(Vinyl Alcohol) Nanocomposites with Enhanced Mechanical Properties and Water Resistance. Polym Int. 2011, 60, 816. DOI: 10.1002/pi.v60.5.
  • Meng, Q.; Kuan, H.; Araby, S.; Kawashima, N.; Saber, N.; Wang, C. H.; Ma, J. Effect of Interface Modification on PMMA/graphene Nanocomposites. J. Mater. Sci. 2014, 49, 5838. DOI: 10.1007/s10853-014-8278-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.