707
Views
30
CrossRef citations to date
0
Altmetric
Articles

Fractional Laplacian with Hardy potential

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 20-50 | Received 06 Nov 2017, Accepted 13 Oct 2018, Published online: 20 Jan 2019

References

  • Herbst, I. W. (1977). Spectral theory of the operator (p2+m2)1/2−Ze2/r. Communmath. Phys. Phys. 53(3):285–294. http://projecteuclid.org/euclid.cmp/1103900706
  • Frank, R. L., Seiringer, R. (2008). Non-linear ground state representations and sharp hardy inequalities. J. Funct. Anal. 255(12):3407–3430. doi:10.1016/j.jfa.2008.05.015
  • Bogdan, K., Dyda, B., Kim, P. (2016). Hardy inequalities and non-explosion results for semigroups. Potent Anal. 44(2):229–247. doi:10.1007/s11118-015-9507-0
  • Baras, P., Goldstein, J. A. (1984). The heat equation with a singular potential. Trans. Am. Math. Soc. 284(1):121–139. doi:10.2307/1999277
  • Vazquez, J. L., Zuazua, E. (2000). The hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1):103–153. doi:10.1006/jfan.1999.3556
  • Liskevich, V., Sobol, Z. (2003). Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients. Potent Anal. 18(4):359–390. doi:10.1023/A:1021877025938
  • Milman, P. D., Semenov, Y. A. (2004). Global heat kernel bounds via desingularizing weights. J. Funct. Anal. 212(2):373–398. doi:10.1016/j.jfa.2003.12.008
  • Milman, P. D., Semenov, Y. A. (2005). Corrigendum to: “global heat kernel bounds via desingularizing weights. J. Funct. Anal. 229(1):238–239. doi:10.1016/j.jfa.2005.03.002
  • Grigorýan, A. (2006). Heat kernels on weighted manifolds and applications. In: Jorgenson, J., Walling, L., eds. The Ubiquitous Heat Kernel, Volume 398 of Contemp. Math. Providence, RI; Amer. Math. Soc., pp. 93–191.
  • Moschini, L., Tesei, A. (2007). Parabolic Harnack inequality for the heat equation with inverse-square potential. Forum Math. 19(3):407–427. doi:10.1515/FORUM.2007.017
  • Filippas, S., Moschini, L., Tertikas, A. (2007). Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains. Commun. Math. Phys. 273(1):237–281. doi:10.1007/s00220-007-0253-z
  • Metafune, G., Sobajima, M., Spina, C. (2017). Kernel estimates for elliptic operators with second-order discontinuous coefficients. J. Evol. Equ. 17(1):485–522. doi:10.1007/s00028-016-0355-1
  • Mytnik, L., Perkins, E. (2017). The dimension of the boundary of super-Brownian motion. ArXiv e-Prints Nov. doi:10.1007/s00440-018-0866-5
  • Pilarczyk, D. (2013). Self-similar asymptotics of solutions to heat equation with inverse square potential. J. Evol. Equ. 13(1):69–87. doi:10.1007/s00028-012-0169-8
  • Pilarczyk, D. (2017). Linear evolution equation with fractional Laplacian and singular potential. Houston J. Math. 43(3):953–967.
  • Bogdan, K., Szczypkowski, K. (2014). Gaussian estimates for Schrödinger perturbations. Studia Math. 221(2):151–173. doi:10.4064/sm221-2-4
  • Bogdan, K., Dziubański, J., Szczypkowski, K. Sharp Gaussian estimates for heat kernels of Schrödinger operators. arXiv1706.06172.
  • Bogdan, K., Hansen, W., Jakubowski, T. (2008). Time-dependent Schrödinger perturbations of transition densities. Studia Math. 189(3):235–254. doi:10.4064/sm189-3-3
  • Bogdan, K., Jakubowski, T., Sydor, S. (2012). Estimates of perturbation series for kernels. J. Evol. Equ. 12(4):973–984. doi:10.1007/s00028-012-0164-0
  • Bogdan, K., Butko, Y., Szczypkowski, K. (2016). Majorization, 4G theorem and Schrödinger perturbations. J. Evol. Equ. 16(2):241–260. doi:10.1007/s00028-015-0301-7
  • Abdellaoui, B., Medina, M. A., Peral, I., Primo, A. (2016). The effect of the hardy potential in some Calderón-Zygmund properties for the fractional Laplacian. J. Diff Equ. 260(11):8160–8206. doi:10.1016/j.jde.2016.02.016
  • Abdellaoui, B., Medina, M. A., Peral, I., Primo, A. (2016). Optimal results for the fractional heat equation involving the Hardy potential. Nonl Anal. 140:166–207. doi:10.1016/j.na.2016.03.013
  • Frank, R. L., Lieb, E. H., Seiringer, R. (2007). Hardy-Lieb-Thirring inequalities for fractional schrödinger operators. J. Am. Math. Soc. 21(4):925–950. doi:10.1090/S0894-0347-07-00582-6
  • BenAmor, A. The heat equation for the Dirichlet fractional Laplacian with Hardy’s potentials: properties of minimal solutions and blow-up. arxiv:01784.
  • Barbatis, G., Filippas, S., Tertikas, A. (2004). Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal. 208(1):1–30. doi:10.1016/j.jfa.2003.10.002
  • Bogdan, K., Byczkowski, T., Kulczycki, T., Ryznar, M., Song, R., Vondraček, Z. (2009). Potential Analysis of Stable Processes and Its Extensions, Volume 1980 of Lecture Notes in Mathematics. Berlin: Springer-Verlag.
  • Kwaśnicki, M. (2017). Ten equivalent definitions of the fractional laplace operator. Fract. Calc. Appl. Anal. 20(1):7–51. doi:10.1515/fca-2017-0002
  • Biler, P., Karch, G., Zienkiewicz, J. (2018). Large global-in-time solutions to a nonlocal model of chemotaxis. Adv. Math. 330:834–875. doi:10.1016/j.aim.2018.03.036
  • Davies, E. B. (1987). Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109(2):319–333. doi:10.2307/2374577
  • Carlen, E. A., Kusuoka, S., Stroock, D. W. (1987). Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23(2, suppl):245–287. http://www.numdam.org/item/AIHPB_1987__23_S2_245_0
  • Murugan, M., Saloff-Coste, L. (2017). Davies’ method for anomalous diffusions. Proc. Am. Math. Soc. 145(4):1793–1804. doi:10.1090/proc/13324
  • Fukushima, M., Oshima, Y., Takeda, M. (2011). Dirichlet Forms and Symmetric Markov Processes, Volume 19 of De Gruyter Studies in Mathematics, extended edition. Berlin: Walter de Gruyter & Co.
  • Blumenthal, R., Getoor, R. (1960). Some theorems on stable processes. Trans. Am. Math. Soc. 95(2):263–273. doi:10.1090/S0002-9947-1960-0119247-6
  • Lieb, E. H., Loss, M. (2001). Analysis, Volume 14 of Graduate Studies in Mathematics, 2nd ed. Providence, RI: American Mathematical Society.
  • Schilling, R. L., Uemura, T. (2012). On the structure of the domain of a symmetric jump-type Dirichlet form. Publ. Res. Inst. Math. Sci. 48(1):1–20. doi:10.2977/PRIMS/58

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.