261
Views
3
CrossRef citations to date
0
Altmetric
Articles

The heat kernel on asymptotically hyperbolic manifolds

ORCID Icon & ORCID Icon
Pages 1031-1071 | Received 04 Feb 2019, Accepted 11 Dec 2019, Published online: 14 Apr 2020

References

  • Cheng, S. Y., Li, P., Yau, S. T. (1981). On the upper estimate of the heat kernel of a complete Riemannian manifold. Amer. J. Math. 103(5):1021–1063. DOI: 10.2307/2374257.
  • Cheeger, J., Yau, S. T. (1981). A lower bound for the heat kernel. Comm. Pure Appl. Math. 34(4):465–480. DOI: 10.1002/cpa.3160340404.
  • Li, P., Yau, S. T. (1986). On the parabolic kernel of the Schrödinger operator. Acta Math. 156(0):153–201. DOI: 10.1007/BF02399203.
  • Davies, E. B., Mandouvalos, N. (1988). Heat kernel bounds on hyperbolic space and Kleinian groups. Proc. London Math. Soc. s3-57(1):1, 182–208. DOI: 10.1112/plms/s3-57.1.182.
  • Mazzeo, R., Melrose, R. B. (1987). Meromorphic extention of the resolvent on complete spaces with asymptotically constant negative curvature. J. Func. Anal. 75(2):260–310. DOI: 10.1016/0022-1236(87)90097-8.
  • Mazzeo, R. (1988). The Hodge cohomology of a conformally compact metric. J. Differential Geom. 28(2):309–339. DOI: 10.4310/jdg/1214442281.
  • Graham, C. R., Zworski, M. (2003). Scattering matrix in conformal geometry. Invent. Math. 152(1):89–118. DOI: 10.1007/s00222-002-0268-1.
  • Mazzeo, R. (1991). Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds. Amer. J. Math. 113(1):25–45. DOI: 10.2307/2374820.
  • Graham, C. R., Lee, J. M. (1991). Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2):186–225. DOI: 10.1016/0001-8708(91)90071-E.
  • Lee, J. M. (1995). The spectrum of an asymptotically hyperbolic Einstein manifold. Comm. Anal. Geom. 3(2):253–271. DOI: 10.4310/CAG.1995.v3.n2.a2.
  • Schoen, R., Yau, S. T. (1988). Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92(1):47–71. DOI: 10.1007/BF01393992.
  • Sullivan, D. (1987). Related aspects of positivity in Riemannian geometry. J. Differential Geom. 25(3):327–351. DOI: 10.4310/jdg/1214440979.
  • Guillarmou, C., Qing, J. (2010). Spectral characterization of Poincaré-Einstein manifolds with infinity of positive Yamabe type. Inter. Math. Res. Not. 2010(9):1720–1740.
  • Bouclet, J.-M. (2013). Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds. Ann. Glob. Anal. Geom. 44(2):115–136. DOI: 10.1007/s10455-012-9359-4.
  • Jensen, A., Kato, T. (1979). Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46(3):583–611. DOI: 10.1215/S0012-7094-79-04631-3.
  • Molchanov, S. A. (1975). Diffusion processes, and Riemannian geometry. Russ. Math. Surv. 30(1):1–59. DOI: 10.1070/RM1975v030n01ABEH001400.
  • Kusuoka, S., Stroock, D. (1994). Asymptotics of certain Wiener functionals with degenerate extrema. Comm. Pure Appl. Math. 47(4):477–501. DOI: 10.1002/cpa.3160470404.
  • Lohoué, N. (1985). Comparaison des champs de vecteurs et de puissances du Laplacian sur une variété à courbure non positive. J. Funct. Anal. 61(2):164–201. DOI: 10.1016/0022-1236(85)90033-3.
  • Coulhon, T., Duong, X. T. (1999). Riesz transforms for 1 ≤ p ≤ 2. Trans. Amer. Math. Soc. 351(03):1151–1169. DOI: 10.1090/S0002-9947-99-02090-5.
  • Auscher, P., Coulhon, T., Duong, X. T., Hofmann, S. (2004). Riesz transform on manifolds and heat kernel regularity. Ann. Sci. Ecole Norm. Sup. 37(6):911–957. DOI: 10.1016/j.ansens.2004.10.003.
  • Chen, X., Hassell, A. (2018). Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds II: Spectral Measure, Restriction Theorem, Spectral Multiplier. Ann. inst. Fourier. 68(3):1011–1075. DOI: 10.5802/aif.3183.
  • Taylor, M. (1989). Lp-estimates on functions of the Laplace operator. Duke Math. J. 58(3):773–793. DOI: 10.1215/S0012-7094-89-05836-5.
  • Melrose, R. B. (1993). The Atiyah-Patodi-Singer Index Theorem (1st Edition).. New York, NY: A K Peters/CRC Press.
  • Albin, P. (2007). A renormalized index theorem for some complete asymptotically regular metrics: The Gauss-Bonnet theorem. Adv. Math. 213(1):1–52. DOI: 10.1016/j.aim.2006.11.009.
  • Sher, D.A. (2013). The heat kernel on an asymptotically conic manifold. Anal. Pde. 6(7):1755–1791. DOI: 10.2140/apde.2013.6.1755.
  • Melrose, R. B., Barreto, A. S., Vasy, A. (2014). Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces. Comm. Part. Diff. Equa. 39(3):452–511. DOI: 10.1080/03605302.2013.866957.
  • Joshi, M., Barreto, A. S. (2000). Inverse scattering on asymptotically hyperbolic manifolds. Acta Math. 184(1):41–86. DOI: 10.1007/BF02392781.
  • Guillarmou, C. (2005). Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds. Duke Math. J. 129(1):1–37. DOI: 10.1215/S0012-7094-04-12911-2.
  • Melrose, R. B. (1992). Calculus of conormal distributions on manifolds with corners. Internat. Math. Res. Notices. 1992(3):51–61. DOI: 10.1155/S1073792892000060.
  • Patterson, S.J., Perry, P. A. (2001). The divisor of Selberg’s zeta function for Kleinian groups. Appendix A by Charles Epstein. Duke Math. J. 106(2):321–390. DOI: 10.1215/S0012-7094-01-10624-8.
  • Chen, X., Hassell, A. (2016). Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy. Comm. Part. Diff. Equ. 41(3):515–578. DOI: 10.1080/03605302.2015.1116561.
  • Erdélyi, A. (1956). Asymptotic Expansions, New York, NY: Dover Publications, Inc.
  • Taylor, M. (1996). Partial Differential Equations II: Qualitative Studies of Linear Equations. New York, NY: Springer-Verlag.
  • Clerc, J. L., Stein, E. M. (1974). Lp-multipliers for noncompact symmetric spaces. Proc. Nat. Acad. Sci. USA. 71(10):3911–3912. DOI: 10.1073/pnas.71.10.3911.
  • Anker, J.-P., Pierfelice, V. (2009). Nonlinear Schrödinger equation on real hyperbolic spaces. Ann. I. H. Poincaré Analyse Non Linéaire. 26(5):1853–1869. DOI: 10.1016/j.anihpc.2009.01.009.
  • Cowling, M. (1978). The Kunze-Stein phenomenon. Ann. Math. 107(2):2, 209–234. DOI: 10.2307/1971142.
  • Cowling, M. (1996). Michael Herz’s “Principe de Majoration” and the Kunze-Stein Phenomenon, Harmonic analysis and number theory (Montreal, PQ), CMS Conf. Proc., 21, Providence, RI: Amer. Math. Soc. pp. 73–88.
  • Herz, C. (1970). Sur le phénomène de Kunze-Stein. C. R. Acad. Sci. Paris Sr. A-B. 271:A491–A493.
  • Lipsman, R. L. (1969). Uniformly bounded representations of the Lorentz groups. Amer. J. Math. 91(4):938–962. DOI: 10.2307/2373311.
  • Guillarmou, C., Hassell, A. (2008). Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. Math. Ann. 341(4):859–896. DOI: 10.1007/s00208-008-0216-5.
  • Green, L., Gulliver, R. (1985). Planes without conjugate points. J. Differential Geom. 22(1):43–47. DOI: 10.4310/jdg/1214439720.
  • Innami, N. (1986). The n-plane with integral curvature zero and without conjugate points. Proc. Japan Acad. Ser. A Math. Sci. 62(7):282–284. DOI: 10.3792/pjaa.62.282.
  • Guillarmou, C., Hassell, A., Sikora, A. (2013). Resolvent at low energy III: The spectral measure. Trans. Amer. Math. Soc. 365(11):6103–6148. DOI: 10.1090/S0002-9947-2013-05849-7.
  • Wang, Y. Resolvent and Radiation Fields on Non-trapping Asymptotically Hyperbolic Manifolds, arXiv (1410). 6936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.