189
Views
12
CrossRef citations to date
0
Altmetric
Articles

Reconstruction of piecewise constant layered conductivities in electrical impedance tomography

ORCID Icon
Pages 1118-1133 | Received 16 Apr 2019, Accepted 14 Apr 2020, Published online: 13 May 2020

References

  • Calderón, A.-P. (1980). On an inverse boundary value problem. In Seminar on Numerical Analysis and Its Applications to Continuum Physics. Rio de Janeiro: Soc. Brasil. Mat., pp. 65–73.
  • Astala, K., Päivärinta, L. (2006). Calderón’s inverse conductivity problem in the plane. Ann. Math. 163(1):265–299. DOI: 10.4007/annals.2006.163.265.
  • Caro, P., Rogers, K. M. (2016). Global uniqueness for the Calderón problem with Lipschitz conductivities. In Forum of Mathematics. Pi, Vol. 4. Cambridge: Cambridge University Press.
  • Brown, R. M., Uhlmann, G. A. (1997). Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions. Comm. PDE. 22(5–6):1009–1027. DOI: 10.1080/03605309708821292.
  • Nachman, A. I. (1988). Reconstructions from boundary measurements. Ann. Math. 128(3):531–576. DOI: 10.2307/1971435.
  • Nachman, A. I. (1996). Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143(1):71–96. DOI: 10.2307/2118653.
  • Cornean, H., Knudsen, K., Siltanen, S. (2006). Towards a d-bar reconstruction method for three-dimensional EIT. J. Inverse Ill-Posed Probl. 14(2):111–134. DOI: 10.1515/156939406777571102.
  • Hamilton, S. J., Hauptmann, A., Siltanen, S. (2014). A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Probl. Imag. 8(4):1053–1072. DOI: 10.3934/ipi.2014.8.1053.
  • Hyvönen, N., Päivärinta, L., Tamminen, J. P. (2018). Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Probl. Imag. 12(2):373–400. DOI: 10.3934/ipi.2018017.
  • Knudsen, K., Lassas, M., Mueller, J. L., Siltanen, S. (2007). D-bar method for electrical impedance tomography with discontinuous conductivities. SIAM J. Appl. Math. 67(3):893–913. DOI: 10.1137/060656930.
  • Knudsen, K., Lassas, M., Mueller, J. L., Siltanen, S. (2009). Regularized D-bar method for the inverse conductivity problem. Inverse Probl. Imag. 3(4):599–624. DOI: 10.3934/ipi.2009.3.599.
  • Siltanen, S., Mueller, J., Isaacson, D. (2000). An implementation of the reconstruction algorithm of A. Nachman for the 2-D inverse conductivity problem. Inverse Prob. 16(3):681–699. DOI: 10.1088/0266-5611/16/3/310.
  • Siltanen, S., Tamminen, J. P. (2014). Reconstructing conductivities with boundary corrected D-bar method. J. Inverse Ill-Posed Probl. 22(6):847–870.
  • Beretta, E., Micheletti, S., Perotto, S., Santacesaria, M. (2018). Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT. J. Comput. Phys. 353:264–280. DOI: 10.1016/j.jcp.2017.10.017.
  • Kenig, C., Salo, M. (2014). Recent progress in the Calderón problem with partial data. Contemp. Math. 615:193–222.
  • Imanuvilov, O. Y., Uhlmann, G., Yamamoto, M. (2010). The Calderón problem with partial data in two dimensions. J. Amer. Math. Soc. 23(3):655–691. DOI: 10.1090/S0894-0347-10-00656-9.
  • Imanuvilov, O. Y., Uhlmann, G., Yamamoto, M. (2015). The Neumann-to-Dirichlet map in two dimensions. Adv. Math. 281:578–593. DOI: 10.1016/j.aim.2015.03.026.
  • Isakov, V. (2007). On uniqueness in the inverse conductivity problem with local data. Inverse Probl. Imag. 1(1):95–105. DOI: 10.3934/ipi.2007.1.95.
  • Kenig, C., Salo, M. (2013). The Calderón problem with partial data on manifolds and applications. Anal. PDE. 6(8):2003–2048. DOI: 10.2140/apde.2013.6.2003.
  • Harrach, B. (2019). Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes. Inverse Prob. 35(2):24005. DOI: 10.1088/1361-6420/aaf6fc.
  • Kohn, R., Vogelius, M. (1985). Determining conductivity by boundary measurements II. Interior results. Comm. Pure Appl. Math. 38(5):643–667. DOI: 10.1002/cpa.3160380513.
  • Nachman, A. I., Street, B. (2010). Reconstruction in the Calderón problem with partial data. Comm. PDE. 35(2):375–390. DOI: 10.1080/03605300903296322.
  • Borcea, L. (2002). Electrical impedance tomography. Inverse Prob. 18(6):R99–136. DOI: 10.1088/0266-5611/18/6/201.
  • Borcea, L. (2003). Addendum to “electrical impedance tomography”. Inverse Prob. 19(4):997–998. DOI: 10.1088/0266-5611/19/4/501.
  • Cheney, M., Isaacson, D., Newell, J. C. (1999). Electrical impedance tomography. SIAM Rev. 41(1):85–101. DOI: 10.1137/S0036144598333613.
  • Uhlmann, G. (2009). Electrical impedance tomography and Calderón’s problem. Inverse Prob. 25(12):123011. DOI: 10.1088/0266-5611/25/12/123011.
  • Alessandrini, G., de Hoop, M. V., Gaburro, R., Sincich, E. (2018). EIT in a layered anisotropic medium. Inverse Probl. Imaging. 12(3):667–676. DOI: 10.3934/ipi.2018028.
  • Harrach, B., Ullrich, M. (2013). Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM J. Math. Anal. 45(6):3382–3403. DOI: 10.1137/120886984.
  • Nakamura, G., Tanuma, K. (2001). Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map. Inverse Prob. 17(3):405–419. DOI: 10.1088/0266-5611/17/3/303.
  • Candiani, V., Dardé, J., Garde, H., Hyvönen, N. Monotonicity-based reconstruction of extreme inclusions in electrical impedance tomography. (2019). Preprint available from: https://arxiv.org/abs/1909.12110.
  • Garde, H. (2018). Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations. Inverse Probl. Sci. Eng. 26(1):33–50. DOI: 10.1080/17415977.2017.1290088.
  • Garde, H., Staboulis, S. (2017). Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography. Numer. Math. 135(4):1221–1251. DOI: 10.1007/s00211-016-0830-1.
  • Garde, H., Staboulis, S. (2019). The regularized monotonicity method: detecting irregular indefinite inclusions. Inverse Probl. Imag. 13(1):93–116. DOI: 10.3934/ipi.2019006.
  • Gebauer, B. (2008). Localized potentials in electrical impedance tomography. Inverse Probl. Imag. 2(2):251–269. DOI: 10.3934/ipi.2008.2.251.
  • Harrach, B., Seo, J. K. (2010). Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal. 42(4):1505–1518. DOI: 10.1137/090773970.
  • Harrach, B., Ullrich, M. (2015). Resolution guarantees in electrical impedance tomography. IEEE Trans. Med. Imaging. 34(7):1513–1521. DOI: 10.1109/TMI.2015.2404133.
  • Ikehata, M. (1998). Size estimation of inclusion. J. Inverse Ill-Posed Probl. 6(2):127–140.
  • Kang, H., Seo, J. K., Sheen, D. (1997). The inverse conductivity problem with one measurement: stability and estimation of size. SIAM J. Math. Anal. 28(6):1389–1405. DOI: 10.1137/S0036141096299375.
  • Tamburrino, A., Rubinacci, G. (2002). A new non-iterative inversion method for electrical resistance tomography. Inverse Prob. 18(6):1809–1829. DOI: 10.1088/0266-5611/18/6/323.
  • Brühl, M. (2001). Explicit characterization of inclusions in electrical impedance tomography. SIAM J. Math. Anal. 32(6):1327–1341. DOI: 10.1137/S003614100036656X.
  • Brühl, M., Hanke, M. (2000). Numerical implementation of two non-iterative methods for locating inclusions by impedance tomography. Inverse Prob. 16(4):1029–1042. DOI: 10.1088/0266-5611/16/4/310.
  • Gebauer, B., Hyvönen, N. (2007). Factorization method and irregular inclusions in electrical impedance tomography. Inverse Prob. 23(5):2159–2170. DOI: 10.1088/0266-5611/23/5/020.
  • Hanke-Bourgeois, M., Kirsch, A. (2015). Sampling methods. In Handbook of Mathematical Methods in Imaging. Berlin, Germany: Springer, pp. 591–647.
  • Harrach, B. (2013). Recent progress on the factorization method for electrical impedance tomography. Comput. Math. Methods Med. 2013:1–8. DOI: 10.1155/2013/425184.
  • Kirsch, A., Grinberg, N. (2008). The Factorization Method for Inverse Problems. USA: Oxford University Press.
  • Brander, T., Kar, M., Salo, M. (2015). Enclosure method for the p-Laplace equation. Inverse Prob. 31(4):45001. DOI: 10.1088/0266-5611/31/4/045001.
  • Ikehata, M. (1999). How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms. J. Inverse Ill-Posed Probl. 7(3):255–271.
  • Ikehata, M. (2000). Reconstruction of the support function for inclusion from boundary measurements. J. Inverse Ill-Posed Probl. 8:367–378.
  • Garde, H., Hyvönen, N., Kuutela, T. (2020). On regularity of the logarithmic forward map of electrical impedance tomography. SIAM J. Math. Anal. 52(1):197–220. DOI: 10.1137/19M1256476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.