269
Views
41
CrossRef citations to date
0
Altmetric
Research Article

On the geometric structures of transmission eigenfunctions with a conductive boundary condition and applications

ORCID Icon, & ORCID Icon
Pages 630-679 | Received 25 Nov 2018, Accepted 01 Sep 2020, Published online: 02 Jan 2021

References

  • Blåsten, E., Päivärinta, L. (2013). Completeness of generalized transmission eigenfunctions. Inverse Prob. 29(10):104002. DOI: 10.1088/0266-5611/29/10/104002.
  • Cakoni, F., Gintides, D., Haddar, H. (2010). The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1):237–255. DOI: 10.1137/090769338.
  • Colton, D., Kirsch, A., Päivärinta, L. (1989). Far-field patterns for acoustic waves in an inhomogeneous medium. SIAM J. Math. Anal. 20(6):1472–1483. DOI: 10.1137/0520096.
  • Colton, D., Monk, P. (1988). The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium. Q J. Mechanics Appl. Math. 41(1):97–125. DOI: 10.1093/qjmam/41.1.97.
  • Kirsch, A. (1986). The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37(3):213–225. DOI: 10.1093/imamat/37.3.213.
  • Lakshtanov, E., Vainberg, B. (2013). Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem. Inverse Prob. 29(10):104003. DOI: 10.1088/0266-5611/29/10/104003.
  • Päivärinta, L., Sylvester, J. (2008). Transmission eigenvalues. SIAM J. Math. Anal. 40(2):738–753. DOI: 10.1137/070697525.
  • Robbiano, L. (2013). Spectral analysis of the interior transmission eigenvalue problem. Inverse Prob. 29(10):104001. DOI: 10.1088/0266-5611/29/10/104001.
  • Rynne, B. P., Sleeman, B. D. (1991). The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22(6):1755–1762. DOI: 10.1137/0522109.
  • Bondarenko, O., Harris, I., Kleefeld, A. (2017). The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary. Appl. Anal. 96(1):2–22. DOI: 10.1080/00036811.2016.1204440.
  • Bondarenko, O., Liu, X. (2013). The factorization method for inverse obstacle scattering with conductive boundary condition. Inverse Prob. 29(9):095021. DOI: 10.1088/0266-5611/29/9/095021.
  • Harris, I., Kleefeld, A. (2020). The inverse scattering problem for a conductive boundary condition and transmission eigenvalues. Appl. Anal. 99(3):508–529. DOI: 10.1080/00036811.2018.1504028.
  • Cakoni, F., Haddar, H. (2013). Transmission eigenvalues in inverse scattering theory. In: Uhlmann, G., ed., Inverse Problems and Applications: Inside Out II, Mathematical Sciences Research Institute Publications, Vol. 60. Cambridge: Cambridge University Press, pp. 529–580.
  • Blåsten, E., Päivärinta, L., Sylvester, J. (2014). Corners always scatter. Commun. Math. Phys. 331(2):725–753. DOI: 10.1007/s00220-014-2030-0.
  • Päivärinta, L., Salo, M., Vesalainen, E. V. (2017). Strictly convex corners scatter. Rev. Mat. Iberoamericana . 33(4):1369–1396. DOI: 10.4171/RMI/975.
  • Blåsten, E., Liu, H. (2017). On vanishing near corners of transmission eigenfunctions. J. Funct. Anal. 273(11):3616–3632. DOI: 10.1016/j.jfa.2017.08.023.
  • Blåsten, E., Li, X., Liu, H., Wang, Y. (2017). On vanishing and localization near cusps of transmission eigenfunctions: a numerical study. Inverse Prob. . 33(10):105001. DOI: 10.1088/1361-6420/aa8826.
  • Blåsten, E., Liu, H. Scattering by curvatures, radiationless sources, transmission eigenfunctions and inverse scattering problems, arXiv:1808.01425
  • Blåsten, E. (2018). Nonradiating sources and transmission eigenfunctions vanish at corners and edges. SIAM J. Math. Anal. 50(6):6255–6270. DOI: 10.1137/18M1182048.
  • Alessandrini, G., Rondi, L. (2005). Determining a sound-soft polyhedral scatterer by a single far-field measurement. Proc. Amer. Math. Soc. 133(6):1685–1691. DOI: 10.1090/S0002-9939-05-07810-X.
  • Blåsten, E., Liu, H. (2020). On corners scattering stably, nearly non-scattering interrogating waves, and stable shape determination by a single far-field pattern. Indiana Univ. Math. J. in press,
  • Blåsten, E., Liu, H. (2020). Recovering piecewise constant refractive indices by a single far-field pattern. Inverse Prob. 36(8):085005. DOI: 10.1088/1361-6420/ab958f.
  • Cao, X., Diao, H., Li, J. (2020). Some recent progress on inverse scattering problems within general polyhedral geometry. Electron. Res. Arch. DOI: 10.3934/era.2020090
  • Cao, X., Diao, H., Liu, H., Zou, J. (2020). On nodal and singular structures of Laplacian eigenfunctions and applications to inverse scattering problems. J. Math. Pures Appl. 143:116–161.
  • Cheng, J., Yamamoto, M. (2003). Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves. Inverse Prob. 19(6):1361–1384. DOI: 10.1088/0266-5611/19/6/008.
  • Diao, H., Liu, H., Wang, L. (2020). On generalized Holmgren’s principle to the Lamé operator with applications to inverse elastic problems. Cal. Var. Partial Differ. Equations 59(5):179.
  • Liu, H. (2008). A global uniqueness for formally determined inverse electromagnetic obstacle scattering. Inverse Prob. 24(3):035018. DOI: 10.1088/0266-5611/24/3/035018.
  • Liu, H., Petrini, M., Rondi, L., Xiao, J. (2017). Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements. J. Differ. Equations 262(3):1631–1670. DOI: 10.1016/j.jde.2016.10.021.
  • Liu, H., Rondi, L., Xiao, J. (2019). Mosco convergence for H (curl) spaces, higher integrability for Maxwell’s equations, and stability in direct and inverse EM scattering problems. J. Eur. Math. Soc. 21(10):2945–2993. DOI: 10.4171/JEMS/895.
  • Liu, H., Xiao, J. (2017). Decoupling elastic waves and its applications. J. Differential Equations. 263(8):4442–4480. DOI: 10.1016/j.jde.2017.05.022.
  • Liu, H., Xiao, J. (2017). On electromagnetic scattering from a penetrable corner. SIAM J. Math. Anal. 49(6):5207–5241. DOI: 10.1137/16M110753X.
  • Liu, H., Yamamoto, M., Zou, J. (2009). New reflection principles for Maxwell equations and their applications. Numer. Math.: TMA. 2:1–17.
  • Liu, H., Yamamoto, M., Zou, J. (2007). Reflection principle for Maxwell’s equations and its application to inverse electromagnetic scattering problem. Inverse Prob. 23(6):2357–2366. DOI: 10.1088/0266-5611/23/6/005.
  • Liu, H., Zou, J. (2006). Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers. Inverse Prob. 22(2):515–524. DOI: 10.1088/0266-5611/22/2/008.
  • Liu, H., Zou, J. (2007). On unique determination of partially coated polyhedral scatterers with far field measurements. Inverse Prob. 23(1):297–308. DOI: 10.1088/0266-5611/23/1/016.
  • Rondi, L. (2008). Stable determination of sound-soft polyhedral scatterers by a single measurement. Indiana Univ. Math. J. 57(3):1377–1408. DOI: 10.1512/iumj.2008.57.3217.
  • Weck, N. (2004). Approximation by Herglotz wave functions. Math. Meth. Appl. Sci. 27(2):155–162. DOI: 10.1002/mma.448.
  • Costabel, M. (1988). Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3):613–626. DOI: 10.1137/0519043.
  • McLean, W. (2010). Strongly Elliptic Systems and Boundary Integral Equations. Cambridg: Cambridge University Press.
  • Colton, D., Kress, R. (1998). Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. Berlin: Springer-Verlag.
  • Abramowitz, M., Stegun, I. A. (1964). Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Vol. 55, Massachusetts, Courier Corporation.
  • Bondarenko, O. (2016). The factorization method for conducting transmission conditions, M.Sc. Dissertation, KIT. Karlsruhe, Germany.
  • Harrington, R. F., Mautz, J. R. (1975). An impedance sheet approximation for thin dielectric shells. IEEE Trans. Antennas Propagat. 23(4):531–534. DOI: 10.1109/TAP.1975.1141099.
  • Senior, T. B. A. (1962). A note on the impedance boundary condition, Canad. Can. J. Phys. 40(5):663–665. DOI: 10.1139/p62-067.
  • Angell, T. S., Kirsch, A. (1992). The conductive boundary condition for Maxwells equations. SIAM J. Appl. Math. 52(6):1597–1610. DOI: 10.1137/0152092.
  • Chaumont-Frelet, T., Nicaise, S. (2018). High-frequency behaviour of corner singularities in Helmholtz problems. ESAIM: Math. Modell. Numer. Anal. 52(5):1803–1845. DOI: 10.1051/m2an/2018031.
  • Costabel, M., Dauge, M. (1993). Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems. Math. Nachr. 162(1):209–237. DOI: 10.1002/mana.19931620117.
  • Dauge, M. (1988). Elliptic Boundary Value Problems in Corner Domains-Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics, Vol. 1341. Berlin: Springer-Verlag.
  • Grisvard, P. (1985). Boundary Value Problems in Non-Smooth Domains. London: Pitman.
  • Cao, X., Diao, H., Liu, H. (2020). Determining a piecewise conductive medium body by a single far-field measurement. CSIAM Trans. Appl. Math. DOI: 10.4208/csiam-am.2020-0020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.