244
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stability of the conical Kähler-Ricci flows on Fano manifolds

&
Pages 953-1004 | Received 17 Oct 2019, Accepted 02 Aug 2020, Published online: 17 Dec 2020

References

  • Chen, X. X., Donaldson, S. K., Sun, S., (2014). Kähler-Einstein metric on Fano manifolds, I: approximation of metrics with cone singularities. J. Amer. Math. Soc. 28(1):183–197. DOI: 10.1090/S0894-0347-2014-00799-2.
  • Chen, X. X., Donaldson, S. K., Sun, S., (2014). Kähler-Einstein metric on Fano man- ifolds, II: limits with cone angle less than 2π. J. Amer. Math. Soc. 28(1):199–234. DOI: 10.1090/S0894-0347-2014-00800-6.
  • Chen, X. X., Donaldson, S. K., Sun, S., (2014). Kähler-Einstein metric on Fano man- ifolds, III: limits with cone angle approaches 2π and completion of the main proof. J. Amer. Math. Soc. 28(1):235–278. DOI: 10.1090/S0894-0347-2014-00801-8.
  • Tian, G., (2015). K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68(7):1085–1156. DOI: 10.1002/cpa.21578.
  • Berman, R., (2013). A thermodynamical formalism for Monge-Ampere equations, Moser-Trudinger inequalities and Kähler-Einstein metrics. Adv. Math. 248:1254–1297. DOI: 10.1016/j.aim.2013.08.024.
  • Brendle, S., (2013). Ricci flat Kähler metrics with edge singularities. Int. Math. Res. Not. 2013(24):5727–5766. DOI: 10.1093/imrn/rns228.
  • Campana, F., Guenancia, H., Păun, M., (2013). Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. Sci. École Normale Supérieure. 46:879–916.
  • Donaldson, S. K. (2012). Kähler metrics with cone singularities along a divisor. In Essays in Mathematics and Its Applications, Berlin Heidelberg: Springer, pp. 49–79.
  • Donaldson S. K., (2009). Discussion of the Kähler-Einstein problem, preprint. Available at http://www2.imperial.ac.uk/skdona/KENOTES.PDF.
  • Guenancia, H., Pa⌣ un, M., (2016). Conic singularities metrics with perscribed Ricci curvature: the case of general cone angles along normal crossing divisors. J. Differential Geom. 103(1):15–57. DOI: 10.4310/jdg/1460463562.
  • Guo, B., and J., Song, Schauder estimates for equations with cone metrics I. arXiv:1612.00075.
  • Guo, B., Song, J., Schauder estimates for equations with cone metrics II. arXiv:1809.03116.
  • Jeffres, T., (2000). Uniqueness of Kähler-Einstein cone metrics. Publ. Mat. 44:437–448. DOI: 10.5565/PUBLMAT_44200_04.
  • Jeffres, T., Mazzeo, R., Rubinstein, Y., (2016). Kähler-Einstein metrics with edge singularities. Ann. Math. 183:95–176.
  • Li, C., Sun, S., (2014). Conical Kähler-Einstein metric revisited. Commun. Math. Phys. 331(3):927–973. DOI: 10.1007/s00220-014-2123-9.
  • Mazzeo, R., (1999). Kähler-Einstein metrics singular along a smooth divisor. J. Équations aux dérivées partielles. :1–10. DOI: 10.5802/jedp.550.
  • Song, J., Wang, X. W., (2016). The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. Geom Topol. 20:49–102.
  • Tian, G., Wang, F., (2019). Cheeger-Colding-Tian theory for conic Kähler-Einstein metrics. The J. Geom. Anal. :1–39.
  • Yao, C. J., (2015). Existence of weak conical Kähler-Einstein metrics along smooth hypersurfaces. Math. Ann. 362(3-4):1287–1304. DOI: 10.1007/s00208-014-1140-5.
  • Rubinstein, Y., (2014). Smooth and singular Kähler-Einstein metrics. Contemporary Math. 630:45–138.
  • Chen, X. X., Wang, Y. Q., (2015). Bessel functions, Heat kernel and the Conical Kähler-Ricci flow. Journal of Functional Analysis. 269(2):551–632. DOI: 10.1016/j.jfa.2015.01.015.
  • Chen, X. X., Wang, Y. Q., (2018). On the long-time behaviour of the Conical Kähler- Ricci flows. J. die reine und angew. Math. 744:165–199.
  • Edwards, G., (2018). A scalar curvature bound along the conical Kähler-Ricci flow. J. Geom. Anal. 28(1):225–252. DOI: 10.1007/s12220-017-9817-0.
  • Edwards, G., (2017). Metric contraction of the cone divisor by the conical Kähler-Ricci Flow. Math. Ann. 374(3-4):1–33.
  • Liu, J. W., Zhang, X., (2017). Conical Kähler-Ricci flow on Fano manifolds. Adv. Math. 307:1324–1371. DOI: 10.1016/j.aim.2016.12.002.
  • Liu, J. W., Zhang, X., (2017). The conical Kähler-Ricci flow with weak initial data on Fano manifold. Int. Math. Res. Not. 17:5343–5384.
  • Liu, J. W., Zhang, X., (2019). Cusp Kähler-Ricci flow on compact Kähler manifolds. Ann. Mat. Pura ed Appl. (1923-). 198:289–306.
  • Lott, J., Zhang, Z., (2016). Ricci flow on quasiprojective manifolds II. J. Eur. Math. Soc. 18(8):1813–1854. DOI: 10.4171/JEMS/630.
  • Nomura, R., (2018). Blow-up behavior of the scalar curvature along the conical Kähler-Ricci flow with finite time singularities. Differ. Geom. Appl. 58:1–16. DOI: 10.1016/j.difgeo.2017.12.001.
  • Shen, L. M., (2018). Unnormalize conical Kähler-Ricci flow. J. die reine angew. Math. DOI: 10.1515/crelle-2018-0007.
  • Shen, L. M., (2018). C2,α-estimate for conical Kähler-Ricci flow. Calculus Variat. Partial Differ. Eq. 57:33.
  • Wang, Y. Q., (2016). Smooth approximations of the conical Kähler-Ricci flows. Math. Ann. 365(1-2):835–856. DOI: 10.1007/s00208-015-1263-3.
  • Zhang, Y. S., (2018). A note on conical Kähler-Ricci flow on minimal elliptic Kähler surfaces. Acta Mathematica Scientia. 38(1):169–176. DOI: 10.1016/S0252-9602(17)30124-8.
  • Zhang, Y. S., (2019). On a twisted conical Kähler-Ricci flow. Ann. Glob. Anal. Geom. 55(1):69–30. DOI: 10.1007/s10455-018-9619-z.
  • Mazzeo, R., Rubinstein, Y., Sesum, N., (2015). Ricci flow on surfaces with conic singularities. Analysis & PDE. 8:839–882.
  • Phong, D., Song Sturm, J. J., Wang, X.W., The Ricci flow on the sphere with marked points. arXiv:1407.1118.
  • Phong, D., Song Sturm, J. J., Wang, X.W., Convergence of the conical Ricci flow on S2 to a soliton. arXiv:1503.04488.
  • Yin, H., (2010). Ricci flow on surfaces with conical singularities. J. Geom. Anal. 20(4):970–995. DOI: 10.1007/s12220-010-9136-1.
  • Tian, G., Zhu, X. H., Properness of Log F-Functionals. arXiv: 1504.03197.
  • Darvas T., Rubinstein, Y. A., (2017). Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soc. 30:347–387.
  • Tian, G. (1994). Kähler-Einstein metrics on algebraic manifolds. In Transcendental Methods in Algebraic Geometry (Cetraro Lecture Notes in Math), Berlin, Heidelberg: Springer, pp. 143–185.
  • Bamler, R., (2018). Convergence of Ricci flows with bounded scalar curvature. Ann. Math. 188:753–831.
  • Chen, X. X., Wang, B., Space of Ricci flows (II). arXiv:1405.6797.
  • Tian, G., Zhang, Z. L., (2016). Regularity of Kähler-Ricci flows on Fano manifolds. Acta Math. 216(1):127–176. DOI: 10.1007/s11511-016-0137-1.
  • Tian, G., Zhu, X. H., (2007). Convergence of Ka¨ hler-Ricci flow. J. Am. Math. Soc. 20:675–699.
  • Tian, G., Zhu, X. H., (2013). Convergence of the Kähler-Ricci flow on Fano manifolds. J. die reine angew. Math. 678:223–245.
  • Phong, D., Sesum, N., Sturm, J., (2007). Multiplier ideal sheaves and the Kähler-Ricci flow. Commun Anal. Geom. 15(3):613–632. DOI: 10.4310/CAG.2007.v15.n3.a7.
  • Phong, D., Song Sturm, J. J., Weinkove, B., (2009). The Ka¨ hler-Ricci flow and the ∂¯ operator on vector fields. J. Differ. Geom. 81:631–647.
  • Phong, D., Sturm, J., (2006). On stability and the convergence of the Ka¨ hler-Ricci flow. J. Differ. Geom. 72:149–168.
  • Liu, J. W., Wang, Y., (2015). The convergence of the generalized Kähler-Ricci flow. Commun. Math. Stat. 3(2):239–261. DOI: 10.1007/s40304-015-0058-x.
  • Collins, T., Székelyhidi, G., (2016). The twisted Kähler-Ricci flow. Journal für die reine und angew. Math. 716:179–205.
  • Tian, G., Zhang, S. J., Zhang, Z. L., Zhu, X. H., (2013). Perelman’s entropy and Kähler-Ricci flow on a Fano manifold. Trans. Amer. Math. Soc. 365(12):6669–6695. DOI: 10.1090/S0002-9947-2013-06027-8.
  • Liu, J. W., (2013). The generalized Kähler Ricci flow. J. Math. Anal. Appl. 408(2):751–761. DOI: 10.1016/j.jmaa.2013.06.047.
  • Dai, X. Z., Wang, C. L., Perelman’s W-functional on manifolds with conical singularities. arXiv:1711.08443, to appear Math Research Letters.
  • Dai, X. Z., Wang, C. L., (2017). Perelman’s λ-Functional on Manifolds with Conical Singularities. J. Geometric Anal. 28(4):1–33.
  • Ozuch, T., (2019). Perelman’s Functionals on Cones. J. Geom. Anal. 30(1):1–53.
  • Kröncke, K., Vertman, B., Perelman’s Entropies for Manifolds with conical Singularities. arXiv:1902.02097.
  • Sesum, N., Tian, G., (2008). Bounding scalar curvature and diameter along the Kähler Ricci Flow (After Perelman). JMJ. 7(03):575–587. DOI: 10.1017/S1474748008000133.
  • Yao, C. J., (2016). The continuity method to deform cone angle. J. Geom. Anal. 26(2):1155–1172. DOI: 10.1007/s12220-015-9586-6.
  • Liu, J. W., Zhang, C. J., (2018). The conical complex Monge-Ampère equations on Kähler manifolds. Calc. Var. 57(2):44. DOI: 10.1007/s00526-018-1318-x.
  • Berndtsson, B., (2015). A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. Invent. Math. 200(1):149–200. DOI: 10.1007/s00222-014-0532-1.
  • Song, J., Tian, G., (2017). The Kähler-Ricci flow through singularities. Invent. math. 207(2):519–595. DOI: 10.1007/s00222-016-0674-4.
  • N. V, K. (1996). Lectures on Elliptic and Parabolic Equations in Hölder Spaces, American Mathematical Society.
  • Kołodziej, S., (1998). The complex Monge-Ampère equation. Acta Math. 180(1):69–117. DOI: 10.1007/BF02392879.
  • Kołodziej, S., (2008). Hölder continuity of solutions to the complex Monge- Ampère equation with the right-hand side in Lipschitz: the case of compact Kähler manifolds. Math. Ann. 342(2):379–386. DOI: 10.1007/s00208-008-0239-y.
  • Ye, R. G., (2014). The logarithmic Sobolev inequality along the Ricci flow. Commun. Math. Stat. 2(3-4):363–368. DOI: 10.1007/s40304-015-0044-3.
  • Zhang, Q. S., (2007). A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not.
  • Hsu, S. Y., Uniform Sobolev inequalities for manifolds evolving by Ricci flow. arXiv: 0708.0893.
  • Jiang, W. S., (2016). Bergman kernel along the Kähler-Ricci flow and Tian’s conjecture. J. reine angew. Math. 717:195–226.
  • Dinew, S., (2009). Uniqueness in E(X,ω). J. Funci. Anal. 256:2113–2122.
  • Demailly, J. P., (1992). Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1:361–409.
  • Błocki, Z., Kołodziej, S., (2007). On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135:2089–2093.
  • Tian, G., (1992). On stability of the tangent bundles of Fano varieties. Int. J. Math. 03(03):401–413. DOI: 10.1142/S0129167X92000175.
  • Li, C., (2017). Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds. J. die reine angew. Math. (Crelles J.). 733:55–85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.