128
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Regularized potentials of Schrödinger operators and a local landscape function

ORCID Icon
Pages 1262-1279 | Received 04 Mar 2020, Accepted 25 Nov 2020, Published online: 26 Jan 2021

References

  • Anderson, P. W. (1958). Absence of diffusion in certain random lattices. Phys. Rev. 109(5):1492–1505. DOI: 10.1103/PhysRev.109.1492.
  • Filoche, M., Mayboroda, S. (2012). Universal mechanism for Anderson and weak localization. Proc. Natl. Acad. Sci. USA. 109(37):14761–14766. DOI: 10.1073/pnas.1120432109.
  • Arnold, D., David, G., Jerison, D., Mayboroda, S., Filoche, M. (2016). Effective confining potential of quantum states in disordered media. Phys. Rev. Lett. 116(5):056602. DOI: 10.1103/PhysRevLett.116.056602.
  • Arnold, D., David, G., Filoche, M., Jerison, D., Mayboroda, S. Localization of eigenfunctions via an effective potential. Commun. Partial Differen. Eq. 44(11):1186–1216.
  • Arnold, D., David, G., Filoche, M., Jerison, D., Mayboroda, S. (2019). Computing spectra without solving eigenvalue problems. SIAM J. Sci. Comput. 41(1):B69–B92. DOI: 10.1137/17M1156721.
  • Chalopin, Y., Piazza, F., Mayboroda, S., Weisbuch, C., Filoche, M. (2019). Universality of fold-encoded localized vibrations in enzymes. Sci. Rep. 9(1):12835. DOI: 10.1038/s41598-019-48905-8.
  • David, G., Filoche, M., Mayboroda, S. (2019). The landscape law for the integrated density of states. ArXiv:1909.10558.
  • Filoche, M., Mayboroda, S. (2013). The landscape of Anderson localization in a disordered medium. Fractal geometry and dynamical systems in pure and applied mathematics. II. In: Fractals in Applied Mathematics. Contemp. Math., 601. Providence, RI: Amer. Math. Soc., p. 113–121
  • Filoche, M., Piccardo, M., Wu, Y.-R., Li, C.-K., Weisbuch, C., Mayboroda, S. (2017). Localization landscape theory of disorder in semiconductors I: Theory and modeling. Phys. Rev. B. 95(14):144204. DOI: 10.1103/PhysRevB.95.144204.
  • Harrell, E., Maltsev, A. (2018). On Agmon metrics and exponential localization for quantum graphs. Commun. Math. Phys. 359(2):429–448. DOI: 10.1007/s00220-018-3124-x.
  • Lefebvre, G., Gondel, A., Dubois, M., Atlan, M., Feppon, F., Labbé, A., Gillot, C., Garelli, A., Ernoult, M., Mayboroda, S., et al. (2016). One single static measurement predicts wave localization in complex structures. Phys. Rev. Lett. 117(7):074301. DOI: 10.1103/PhysRevLett.117.074301.
  • Lyra, M. L., Mayboroda, S., Filoche, M. (2015). Dual landscapes in Anderson localization on discrete lattices. EPL. 109(4):47001. DOI: 10.1209/0295-5075/109/47001.
  • Piccardo, M., Li, C.-K., Wu, Y.-R., Speck, J., Bonef, B., Farrell, R., Filoche, M., Martinelli, L., Peretti, J., Weisbuch, C. (2017). Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers. Phys. Rev. B. 95(14):144205. DOI: 10.1103/PhysRevB.95.144205.
  • Agmon, S. (1982). Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators. Mathematical Notes, 29. Princeton, NJ: Princeton University Press; Tokyo: University of Tokyo Press, 118 p.
  • Altmann, R., Henning, P., Peterseim, D. (2020). Quantitative Anderson localization of Schrodinger eigenstates under disorder potentials. arXiv:arXiv:1803.09950, to appear in M3AS.
  • Altmann, R., Peterseim, D. (2019). Localized computation of eigenstates of random Schrödinger operators. SIAM J. Sci. Comput. 41(6):B1211–B1227. DOI: 10.1137/19M1252594.
  • Kornhuber, R., Yserentant, H. (2016). Harry numerical homogenization of elliptic multiscale problems by subspace decomposition. Multiscale Model. Simul. 14(3):1017–1036. DOI: 10.1137/15M1028510.
  • Lu, J., Steinerberger, S. (2018). Detecting localized eigenstates of linear operators. Res. Math. Sci. 5(34), 33.
  • Steinerberger, S. (2017). Localization of quantum states and landscape functions. Proc. Am. Math. Soc. 145(7):2895–2907. DOI: 10.1090/proc/13343.
  • Felix, S., Asch, M., Filoche, M., Sapoval, B. (2007). Localization and increased damping in irregular acoustic cavities. J. Sci. Vibrat. 299(4–5):965–976. DOI: 10.1016/j.jsv.2006.07.036.
  • Jones, P. W., Steinerberger, S. (2019). Localization of Neumann Eigenfunctions near Irregular Boundaries. Nonlinearity. 32(2):768–776. DOI: 10.1088/1361-6544/aafa89.
  • Sapoval, B., Felix, S., Filoche, M. (2008). Localisation and damping in resonators with complex geometry. Eur. Phys. J. Spec. Top. 161(1):225–232. DOI: 10.1140/epjst/e2008-00763-2.
  • Taylor, M. (1996). Partial Differential Equations. II. Qualitative Studies of Linear Equations. Applied Mathematical Sciences, 116. New York: Springer-Verlag.
  • Lorinczi, J., Hiroshima, F., Betz, V. (2011). Feynman-Kac-Type Theorems and Gibbs Measures on Path Space. With Applications to Rigorous Quantum Field Theory. De Gruyter Studies in Mathematics, 34. Berlin: Walter de Gruyter & Co.
  • Lierl, J., Steinerberger, S. (2018). A local Faber-Krahn inequality and applications to Schrödinger’s equation. Comm. Partial Differn. Eq. 43(1):66–81. DOI: 10.1080/03605302.2017.1423330.
  • Rachh, M., Steinerberger, S. (2018). On the location of maxima of solutions of Schroedinger’s equation. Comm. Pure Appl. Math. 71(6):1109–1122. DOI: 10.1002/cpa.21753.
  • Steinerberger, S. (2014). Lower bounds on nodal sets of eigenfunctions via the heat flow. Commun. Partial Differen. Eq. 39(12):2240–2261. DOI: 10.1080/03605302.2014.942739.
  • Steinerberger, S. (2019). Hot spots in convex domains are in the tips (up to an Inradius). arXiv:1907.13044.
  • Simon, B. (1982). Schrödinger semigroups. Bull. Amer. Math. Soc. 7(3):447–526. DOI: 10.1090/S0273-0979-1982-15041-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.