166
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Minimal graphs and differential inclusions

Pages 1162-1194 | Received 17 Mar 2020, Accepted 27 Dec 2020, Published online: 03 Feb 2021

References

  • Giaquinta, M., Modica, G., Soucek, J. (1998). Cartesian Currents in the Calculus of Variations, Vol. II. Berlin, Heidelberg: Springer-Verlag.
  • Giaquinta, M., Martinazzi, L. (2012). An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs. New York, NY: Springer.
  • Osserman, R. (1969). A Survey of Minimal Surfaces. New York, NY: Dover Publications.
  • Gilbarg, D., Trudinger, N. S. (1977). Elliptic Partial Differential Equations of Second Order. Berlin, Germany: Springer.
  • Massari, U., Miranda, M. (1984). Minimal Surfaces of Codimension One. Amsterdam, the Netherlands: Elsevier Science Ltd.
  • Lawson, H. B., Osserman, R. (1977). Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math. 139(0):1–17. DOI: 10.1007/BF02392232.
  • Fischer-Colbrie, D. (1980). Some rigidity theorems for minimal submanifolds of the sphere. Acta Math. 145(0):29–46. DOI: 10.1007/BF02414184.
  • Gregori, G. (1994). Compactness and gradient bounds for solutions of the mean curvature system in two independent variables. J. Geom. Anal. 4(3):327–360. DOI: 10.1007/BF02921585.
  • Wang, M.-T. (2004). The Dirichlet problem for the minimal surface system in arbitrary dimensions and codimensions. Commun. Pure Appl. Math. 57(2):267–281. DOI: 10.1002/cpa.10117.
  • Wang, M.-T. (2004). Interior gradient bounds for solutions to the minimal surface system. Am. J. Math. 126(4):921–934. DOI: 10.1353/ajm.2004.0033.
  • De Lellis, C., De Philippis, G., Kirchheim, B., Tione, R. (2019).Geometric measure theory and differential inclusions. To appear in: Annales de la Faculté de Science de Toulouse, arXiv: 1910.00335.
  • Kirchheim, B. (2003). Rigidity and Geometry of Microstructures. Habilitation thesis, University of Leipzig.
  • Šverák, V. (1993). On Tartar’s conjecture, Annales de l’Institut Henri Poincaré. Analyse Non Linéaire. 10(4):405–412. DOI: 10.1016/S0294-1449(16)30208-6.
  • Müller, S., Šverák, V. (2003). Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157(3):715–742. DOI: 10.4007/annals.2003.157.715.
  • Székelyhidi, L. (2004). The regularity of critical points of polyconvex functionals. Arch. Rational Mech. Anal. 172(1):133–152. DOI: 10.1007/s00205-003-0300-7.
  • Evans, L. C. (1986). Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95(3):227–252. DOI: 10.1007/BF00251360.
  • Kristensen, J., Taheri, A. (2003). Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170(1):63–89. DOI: 10.1007/s00205-003-0275-4.
  • Faraco, D., Székelyhidi, L. (2008). Tartar’s conjecture and localization of the quasiconvex hull in R2×2. Acta Math. 200:279–305.
  • Kristensen, J., Faraco, D. (2011). Compactness versus regularity in the calculus of variations. Discrete Contin. Dyn. Systs Series B. 17(2):473–485. DOI: 10.3934/dcdsb.2012.17.473.
  • Székelyhidi, L. (2007). Rank-one convex hulls in R2×2. Calc. Var. Partial Differ. Equations. 28(4):545–546.
  • Iwaniec, T., Kovalev, L. V., Onninen, J. (2013). Lipschitz regularity for inner-variational equations. Duke Math. J. 162(4):4, 643–672. DOI: 10.1215/00127094-2079791.
  • Sivaloganathan, J., Spector, S. (2002). A construction of infinitely many singular weak solutions to the equations of nonlinear elasticity. Proc. Royal Soc. Edinburgh Sec A Math. 132(4):985–992. DOI: 10.1017/S0308210500001979.
  • Sivaloganathan, J. (201102). On irregular weak solutions of the energy–momentum equations. Proc. Royal Soc. Edinburgh. 141:193–203.
  • Ambrosio, L., Fusco, N., Pallara, D. (2000). Functions of Bounded Variation and Free Discontinuity Problems. Oxford: Oxford University Press.
  • Figalli, A. (2017). The Monge-Ampère Equation and Its Applications. Zurich: European Mathematical Society.
  • Nitsche, J. C. C. (1957). Elementary proof of Bernstein’s Theorem on minimal surfaces. Ann. Math. 66(3):543. DOI: 10.2307/1969907.
  • Müller, S. (1999). Variational models for microstructure and phase transitions. In: Hildebrandt, S., Struwe, M., eds. Calculus of Variations and Geometric Evolution Problems. Lecture Notes in Mathematics, Vol. 1713. Berlin, Heidelberg: Springer.
  • Brezis, H. (2010). Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York, NY: Springer.
  • Kinnunen, J. (2020). Sobolev Spaces. Lecture Notes, Department of Mathematics and Systems Analysis, Aalto University (FI). Available at https://math.aalto.fi/∼jkkinnun/files/sobolev_spaces.pdf.
  • Kinnunen, J. (1994). Higher integrability with weights. Ann. Acad. Sci. Fennicae. 19:355–366.
  • Morrey, C. B. (1953). Second order elliptic systems of differential equations. Proc. Natl. Acad. Sci. U S A. 39(3):201–206. DOI: 10.1073/pnas.39.3.201.
  • Morrey, C. B. (2008). Multiple Integrals in the Calculus of Variations. Berlin Heidelberg: Springer-Verlag.
  • Astala, K., Iwaniec, T., Martin, G. (2009). Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton, NJ: Princeton University Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.