200
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Comparisons of Modern U. S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition: III. Wort Sugar Production during Mashing

, &
Pages 96-111 | Accepted 25 Sep 2017, Published online: 02 Feb 2018

Literature cited

  • Bamforth, C. W. The Components of Barley and Their Degradation during Malting and Mashing. In Scientific Principles of Malting and Brewing. American Society of Brewing Chemists: St. Paul, MN, 2006; pp 45–57.
  • Bamforth, C. W. Current Perspectives on the Role of Enzymes in Brewing. J. Cereal Sci. 2009, 50, 353–357. DOI: 10.1016/j.jcs.2009.03.001.
  • Briggs, D. E. The Biochemistry of Malting. In Malts and Malting. Blackie Academic & Professional: London, 1998; pp 133–228.
  • Briggs, D. E. The Principles of Mashing. In Malts and Malting. Blackie Academic & Professional: London, 1998; pp 229–244.
  • Briggs, D. E.; Hough, J. S.; Stevens, R.; Young, T. W. The Chemistry and Biochemistry of Mashing. In Malting and Brewing Science, Vol. 1 Malt and Sweet Wort. Chapman and Hall: London and New York, 1981; pp 254–303.
  • Duke, S. H.; Vinje, M. A.; Henson, C.A. Comparisons of Amylolytic Enzyme Activities and β-Amylases with Differing Bmy1; Intron III Alleles to Sugar Production during Congress Mashing with North American Barley Cultivars. J. Am. Soc. Brew. Chem. 2012, 70, 230–248.
  • Alves-Jr., S. L.; Herberts, R. A.; Hollatz, C.; Miletti, L. C.; Stambuk, B. Maltose and Maltotriose Active Transport and Fermentation by Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 2007, 65, 99–104.
  • Duke, S. H.; Henson, C. A. A Comparison of Barley Malt Quality Measurements and Malt Sugar Concentrations. J. Am. Soc. Brew. Chem. 2008, 66, 151–161.
  • Duke, S. H.; Henson, C. A. Tracking the Progress of Sugar Production during Congress Mashing with North American Barley Cultivars and Comparisons to Wort Osmolyte Concentrations and Malt Extract. J. Am. Soc. Brew. Chem. 2011, 69, 200–213.
  • Duke, S. H.; Vinje, M. A.; Henson, C. A. Tracking Amylolytic Enzyme Activities during Congress Mashing with North American Barley Cultivars: Comparisons of Patterns of Activity and β-Amylases with Differing Bmy1 Intron III Alleles and Correlations of Amylolytic Enzyme Activities. J. Am. Soc. Brew. Chem. 2012, 70, 10–28.
  • Henson, C. A.; Duke, S. H. A Comparison of Standard and Nonstandard Measures of Malt Quality. J. Am. Soc. Brew. Chem. 2008, 66, 11–19.
  • Sun, Z.; Henson, C. A. A Quantitative Assessment of the Importance of Barley Seed α-Amylase, β-Amylase, Debranching Enzyme, and α-Glucosidase in Starch Degradation. Arch. Biochem. Biophys. 1991, 284, 298–305. DOI: 10.1016/0003-9861(91)90299-X.
  • Henson, C. A.; Duke, S. H.; Bockelman, H. E. Comparisons of Modern U.S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition: II. Amylolytic Enzyme Activities and Thermostabilities. J. Am. Soc. Brew. Chem. 2018, DOI: 10.1080/03610470.2017.1396843.
  • MacGregor, A. W. α-Amylase I from Malted Barley—Physical Properties and Action Pattern on Amylose. Cereal Chem. 1978, 55, 754–765.
  • MacGregor, A. W.; Morgan, J. E.; MacGregor, E. A. The Action of Germinated Barley Alpha-amylases on Linear Maltodextrins. Carbohydr. Res. 1992, 227, 301–313. DOI: 10.1016/0008-6215(92)85080-J.
  • MacGregor, E. A.; MacGregor, A. W.; Macri, L. J.; Morgan, J. E. Models for the Action of Alpha-amylase Isozymes on Linear Substrates. Carbohydr. Res. 1994, 257, 249–268. DOI: 10.1016/0008-6215(94)80039-1.
  • Duke, S. H.; Henson, C. A.; Bockelman, H. E. Comparisons of Modern U.S. and Canadian Malting Barley Cultivars with Those from Pre-Prohibition: I. Malt Extract and Osmolyte Concentration. J. Am. Soc. Brew. Chem. 2017, 75, 85–92.
  • American Society of Brewing Chemists. Methods of Analysis, 8th ed. Malt-4 Extract; American Society of Brewing Chemists, St. Paul, MN, 1992.
  • Muslin, E. H.; Karpelenia, C. B.; Henson, C. A. The Impact of Thermostable α-Glucosidase on the Production of Fermentable Sugars during Mashing. J. Am. Soc. Brew. Chem. 2003, 61, 142–145.
  • Clark, S. E.; Hayes, P. M.; Henson, C. A. Effects of Single Nucleotide Polymorphisms in the β-Amylase 1 Alleles from Barley on Functional Properties of the Enzymes. Plant Physiol. Biochem. 2003, 41, 798–804. DOI: 10.1016/S0981-9428(03)00118-9.
  • Fincher, G. B. Molecular and Cellular Biology Associated with Endosperm Mobilization in Germinating Cereal Grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 305–346. DOI: 10.1146/annurev.pp.40.060189.001513.
  • Kuntz, R. J.; Bamforth, C. W. Time Course for the Development of Enzymes in Barley. J. Inst. Brew. 2007, 113, 196–205. DOI: 10.1002/j.2050-0416.2007.tb00276.x.
  • Ajandouz, E. H.; Abe, J.; Svensson, B.; Marchis-Mouren, G. Barley Malt-α-amylase: Purification, Action Pattern, and Subsite Mapping of Isozyme 1 and Two Members of the Isozyme 2 Subfamily Using p-Nitrophenylated Maltooligosaccharide Substrates. Biochem. Biophys. Acta. 1992, 1159, 193–202.
  • Beers, E. P.; Duke, S. H. Characterization of α-Amylase from Shoots and Cotyledons of Pea (Pisum sativum L.) Seedlings. Plant Physiol. 1990, 92, 1154–1163. DOI: 10.1104/pp.92.4.1154.
  • Doehlert, D. C.; Duke, S. H.; Anderson, L. Beta-amylases from Alfalfa (Medicago sativa L.) Roots. Plant Physiol. 1982, 69, 1096–1102. DOI: 10.1104/pp.69.5.1096.
  • Huang, N.; Stebbins, G. L.; Rodriguez, R. L. Classification and Evolution of α-Amylase Genes in Plants. Proc. Natl. Acad. Sci. USA. 1992, 89, 7526–7530. DOI: 10.1073/pnas.89.16.7526.
  • Jensen, M. T.; Gottschalk, T. E.; Svensson, B. Differences in Conformational Stability of Barley Alpha-amylase Isozymes 1 and 2. Role of Charged Groups and Isozyme 2 Specific Salt Bridges. J. Cereal Sci. 2003, 38, 289–300. DOI: 10.1016/S0733-5210(03)00032-8.
  • Khursheed, B.; Rogers, J. C. Barley α-Amylase Genes, Quantitative Comparison of Steady-state mRNA Levels from Individual Members of the Two Different Families Expressed in Aleurone Cells. J. Biol. Chem. 1988, 263, 18953–18960.
  • Im, H; Henson, C. A. Characterization of High pI α-Glucosidase from Germinated Barley Seeds: Substrate Specificity, Subsite Affinities and Active-site Residues. Carbohydr. Res. 1995, 277, 145–159. DOI: 10.1016/0008-6215(95)00212-C.
  • Dickson, J. G.; Dickson, A. D.; Shands, H. L.; Burkhardt, B. A.; Leith, B. D. Second Annual Report on Barley Quality Studies Including the Investigations Conducted 1934–1935 on Barley Grown in 1934. Wisconsin Agricultural Experiment Station, Madison, and the Division of Cereal Crops and Diseases, Bureau of Plant Industry; United States Department of Agriculture: Madison, WI, 1935.
  • Doehlert, D. C.; Duke, S. H. Specific Determination of α-Amylase Activity in Crude Plant Extracts Containing β-Amylase. Plant Physiol. 1983, 71, 229–234. DOI: 10.1104/pp.71.2.229.
  • Evans, D. E.; Li, C.; Eglinton, J. K. Improved Prediction of Malt Fermentability by Measurement of the Diastatic Power Enzymes β-Amylase, α-Amylase, and Limit Dextrinase: I. Survey of the Levels of Diastatic Power Enzymes in Commercial Malts. J. Am. Soc. Brew Chem. 2008, 66, 223–232.
  • Evans, D. E.; Collins, H.; Eglinton, J.; Wilhelmson, A. Assessing the Impact of the Level of Diastatic Enzymes and Their Thermostability on the Hydrolysis of Starch during Wort Production to Predict Malt Fermentability. J. Am. Soc. Brew. Chem. 2005, 63, 185–198.
  • Doehlert, D. C.; Kuo, T. M.; Juvik, J. A.; Beers, E. P.; Duke, S. H. Characteristics of Carbohydrate Metabolism in Sweet Corn (Sugary-1) Endosperms. J. Amer. Soc. Hort. Sci. 1993, 118, 661–666.
  • Kakefuda, G.; Duke, S. H. Electrophoretic Transfer as a Technique for the Detection and Identification of Plant Amylolytic Enzymes in Polyacrylamide Gels. Plant Physiol. 1984, 75, 278–280. DOI: 10.1104/pp.75.1.278.
  • Kakefuda, G.; Duke, S. H.; Hostak, M. S. Chloroplast and Extrachloroplastic Starch-degrading Enzymes in Pisum sativum L. Planta. 1986, 168, 175–182.
  • Vinje, M. A.; Duke, S. H.; Henson, C. A. Comparison of Factors Involved in Starch Degradation in Barley Germination under Laboratory and Malting Conditions. J. Am. Soc. Brew. Chem. 2015, 73, 195–205.
  • Vinje, M. A.; Willis, D. K.; Duke, S. H.; Henson, C. A. Differential Expression of Two β-Amylase Genes (Bmy1 and Bmy2) in Developing and Mature Barley Grain. Planta. 2011, 233, 1001–1010. DOI: 10.1007/s00425-011-1348-5.
  • Harlan, H.V.; Martini, M. L.; Pope, M.N. Tests of Barley Varieties in America. U.S. Dept. Agric. Bul. 1925, 1334, 219.
  • Åberg, E.; Wiebe, G. A. Classification of Barley Varieties Grown in the United States and Canada in 1945. U.S. Dept. Agr. Tech. Bul. 907, 1946, 190.
  • Foote, W. H. Hannchen Barley Production in Oregon…Its Future. Tech. Q. Master Brew. Assoc. Am.. 1965, 2, 230–232.
  • Sisler, W. W.; Upton, R. L.; Lejeune, A. J. Hannchen and Hanna Malting Barleys for Pacific Northwest. In “Grains of Truth”: About Malting Barley; Malting Barley Improvement Association: Milwaukee, WI, 1958.
  • Lizotte, P. A.; Henson, C. A.; Duke, S. H. Purification and Characterization of Pea Epicotyl β-Amylase. Plant Physiol. 1990, 92, 615–621. DOI: 10.1104/pp.92.3.615.
  • Yamasaki, Y. β-Amylase in Germinating Millet. Phytochemistry. 2003, 64, 935–939. DOI: 10.1016/S0031-9422(03)00430-8.
  • Kakefuda, G.; Duke, S. H. Characterization of Pea Chloroplast D-enzyme (4-α-D-glucanotransferase). Plant Physiol. 1989, 91, 136–143. DOI: 10.1104/pp.91.1.136.
  • Duke, S. H.; Henson, C. A. Maltose Effects on Barley Malt Diastatic Power Enzyme Activity and Thermostability at High Isothermal Mashing Temperatures: II. α-Amylase. J. Am. Soc. Brew. Chem. 2016, 74, 113–126.
  • Henson, C. A.; Duke, S. H. Maltose Effects on Barley Malt Diastatic Power Enzyme Activity and Thermostability at High Isothermal Mashing Temperatures: I. β-Amylase. J. Am. Soc. Brew. Chem. 2016, 74, 100–112.
  • Winter, H.; Huber, S. C. Regulation of Sucrose Metabolism in Higher Plants: Localization and Regulation of Key Enzymes. Crit. Rev. Plant Sci. 2000, 19, 31–67. DOI: 10.1016/S0735-2689(01)80002-2.
  • Prentice, N. Invertase in Germinated Barley. J. Agr. Food Chem. 1972, 20, 764–768. DOI: 10.1021/jf60182a008.
  • Prentice, N. Invertase Activity as a Measure of Malting Quality of Barley. Cereal Chem. 1975, 52, 650–655.
  • Åman, P.; Hesselman, K.; Tilley, A.-C. The Variation in Chemical Composition of Swedish Barleys. J. Cereal Sci. 1985, 3, 73–77. DOI: 10.1016/S0733-5210(85)80035-7.
  • Bach Knudsen, K. E.; Åman, P.; Eggum, B. O. Nutritive Value of Danish Barley Varieties. I. Carbohydrates and Other Major Constituents. J. Cereal Sci. 1987, 6, 173–186. DOI: 10.1016/S0733-5210(87)80053-X.
  • Hall, R. D.; Harris, G.; MacWilliam, I. C. Carbohydrates in Malting and Brewing. V. Further Studies on the Carbohydrates of Barley, Malt and Wort. J. Inst. Brew. 1956, 62, 232–238. DOI: 10.1002/j.2050-0416.1956.tb02854.x.
  • MacLeod, A. M.; Preece, I. A. Studies on the Free Sugars of Barley Grain V. Comparisons of Sugars and Fructosans with Those of Other Cereals. J. Inst. Brew. 1954, 60, 46–55. DOI: 10.1002/j.2050-0416.1954.tb02747.x.
  • Henson, C. A. Purification and Properties of Barley Stem Fructan Exohydroylase. J. Plant Physiol. 1989, 134, 186–191. DOI: 10.1016/S0176-1617(89)80053-7.
  • Henson, C. A.; Livingston, D. P., III. Characterization of a Fructan Exohydrolase Purified from Barley Stems that Hydrolyzes Multiple Fructofuranosidic Linkages. Plant Physiol. Biochem. 1998, 36, 715–720. DOI: 10.1016/S0981-9428(98)80021-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.